Skip to content

Commit

Permalink
feat: Add MMR implementation
Browse files Browse the repository at this point in the history
  • Loading branch information
whiterabbit1983 committed Oct 29, 2024
1 parent 010b1d3 commit 4597512
Show file tree
Hide file tree
Showing 3 changed files with 217 additions and 2 deletions.
106 changes: 106 additions & 0 deletions agents-api/agents_api/models/docs/mmr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
from __future__ import annotations

import logging
from typing import Union

import numpy as np

Matrix = Union[list[list[float]], list[np.ndarray], np.ndarray]

logger = logging.getLogger(__name__)


def _cosine_similarity(x: Matrix, y: Matrix) -> np.ndarray:
"""Row-wise cosine similarity between two equal-width matrices.
Args:
x: A matrix of shape (n, m).
y: A matrix of shape (k, m).
Returns:
A matrix of shape (n, k) where each element (i, j) is the cosine similarity
between the ith row of X and the jth row of Y.
Raises:
ValueError: If the number of columns in X and Y are not the same.
ImportError: If numpy is not installed.
"""

if len(x) == 0 or len(y) == 0:
return np.array([])

x = np.array(x)
y = np.array(y)
if x.shape[1] != y.shape[1]:
msg = (
f"Number of columns in X and Y must be the same. X has shape {x.shape} "
f"and Y has shape {y.shape}."
)
raise ValueError(msg)
try:
import simsimd as simd # type: ignore

x = np.array(x, dtype=np.float32)
y = np.array(y, dtype=np.float32)
z = 1 - np.array(simd.cdist(x, y, metric="cosine"))
return z
except ImportError:
logger.debug(
"Unable to import simsimd, defaulting to NumPy implementation. If you want "
"to use simsimd please install with `pip install simsimd`."
)
x_norm = np.linalg.norm(x, axis=1)
y_norm = np.linalg.norm(y, axis=1)
# Ignore divide by zero errors run time warnings as those are handled below.
with np.errstate(divide="ignore", invalid="ignore"):
similarity = np.dot(x, y.T) / np.outer(x_norm, y_norm)
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
return similarity


def maximal_marginal_relevance(
query_embedding: np.ndarray,
embedding_list: list,
lambda_mult: float = 0.5,
k: int = 4,
) -> list[int]:
"""Calculate maximal marginal relevance.
Args:
query_embedding: The query embedding.
embedding_list: A list of embeddings.
lambda_mult: The lambda parameter for MMR. Default is 0.5.
k: The number of embeddings to return. Default is 4.
Returns:
A list of indices of the embeddings to return.
Raises:
ImportError: If numpy is not installed.
"""

if min(k, len(embedding_list)) <= 0:
return []
if query_embedding.ndim == 1:
query_embedding = np.expand_dims(query_embedding, axis=0)
similarity_to_query = _cosine_similarity(query_embedding, embedding_list)[0]
most_similar = int(np.argmax(similarity_to_query))
idxs = [most_similar]
selected = np.array([embedding_list[most_similar]])
while len(idxs) < min(k, len(embedding_list)):
best_score = -np.inf
idx_to_add = -1
similarity_to_selected = _cosine_similarity(embedding_list, selected)
for i, query_score in enumerate(similarity_to_query):
if i in idxs:
continue
redundant_score = max(similarity_to_selected[i])
equation_score = (
lambda_mult * query_score - (1 - lambda_mult) * redundant_score
)
if equation_score > best_score:
best_score = equation_score
idx_to_add = i
idxs.append(idx_to_add)
selected = np.append(selected, [embedding_list[idx_to_add]], axis=0)
return idxs
112 changes: 110 additions & 2 deletions agents-api/poetry.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions agents-api/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ msgpack = "^1.1.0"
thefuzz = "^0.22.1"
gunicorn = "^23.0.0"
uvloop = "^0.21.0"
simsimd = "^5.9.4"
[tool.poetry.group.dev.dependencies]
ipython = "^8.26.0"
ruff = "^0.5.5"
Expand Down

0 comments on commit 4597512

Please sign in to comment.