Skip to content

kamalshashwat/London-Data-Week

Repository files navigation

London Urban Systems Analysis Project

Overview

Comprehensive quantitative analysis of London's urban systems developed during London Data Week, focusing on crime rates, housing demographics, and environmental indicators across 32 boroughs. This project implements advanced data processing pipelines and statistical modeling techniques to analyze urban patterns and trends.

🚀 Key Features

  • Automated ETL pipelines for TfL API integration
  • Spatial regression modeling for cross-borough analysis
  • Interactive choropleth maps and statistical dashboards
  • Time-series analysis of urban indicators
  • Comprehensive data validation and quality assurance

🛠️ Technologies

Core Technologies

  • Python 3.8+
  • Pandas & NumPy for data processing
  • SciPy & Statsmodels for statistical analysis
  • Folium & QGIS for geospatial visualization

Key Libraries

  • Data Processing: pandas, numpy, scipy
  • Visualization: matplotlib, folium, plotly
  • Statistical Modeling: statsmodels, scikit-learn
  • Geospatial Analysis: geopandas, shapely

📊 Project Components

  1. Data Collection & Processing

    • TfL API integration
    • Borough-level data aggregation
    • Automated data cleaning pipelines
  2. Statistical Analysis

    • Spatial regression modeling
    • Time-series analysis
    • Cross-borough pattern identification
  3. Visualization & Reporting

    • Interactive choropleth maps
    • Statistical dashboards
    • Temporal trend visualization

📁 Repository Structure

london-urban-analysis/
├── notebooks/          # Jupyter notebooks for analysis
├── src/               # Source code
├── data/              # Data directory
└── docs/              # Documentation

🚗 Getting Started

  1. Clone the repository
git clone https://github.com/[your-username]/london-urban-analysis.git
  1. Install dependencies
pip install -r requirements.txt
  1. Navigate to notebooks directory
cd notebooks

📈 Results & Visualizations

[Coming Soon: Screenshots and descriptions of key visualizations]

📖 Documentation

🤝 Contributing

Contributions, issues, and feature requests are welcome! Feel free to check issues page.

📝 License

This project is MIT licensed.

👤 Author

  • GitHub: [@kamalshashwat]
  • LinkedIn: [Kamal Shashwat]

🌟 Acknowledgments

  • London Data Week organizers
  • Transport for London (TfL) for API access
  • Camden Council for data access

About

Visualisations of London from London Data Week

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published