forked from danlou/MedLinker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatcher_exactmatch.py
executable file
·159 lines (111 loc) · 5.07 KB
/
matcher_exactmatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import logging
import random
import pickle
from functools import lru_cache
import spacy
from spacy.tokens import Doc
from spacy.matcher import PhraseMatcher
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%d-%b-%y %H:%M:%S')
class WhitespaceTokenizer(object):
# copied from spacy docs
def __init__(self, vocab):
self.vocab = vocab
def __call__(self, text):
words = text.split(' ')
# All tokens 'own' a subsequent space character in this tokenizer
spaces = [True] * len(words)
return Doc(self.vocab, words=words, spaces=spaces)
class ExactMatch_UMLS():
def __init__(self, umls_db, nerfed_nlp_and_matcher_path):
self.umls_db = umls_db
self.nlp_nerfed = None
self.matcher = None
self.load(nerfed_nlp_and_matcher_path)
def load(self, nerfed_nlp_and_matcher_path):
#
with open(nerfed_nlp_and_matcher_path, 'rb') as f:
self.nlp_nerfed, self.matcher = pickle.load(f)
def hash2string(self, hash_):
return self.nlp_nerfed.vocab.strings[hash_]
@lru_cache(262144)
def match_cuis(self, text, ignore_overlaps=True):
#
doc = self.nlp_nerfed(text.lower())
tokens = text.split(' ')
matches = self.matcher(doc)
matches = [(self.hash2string(h), s, e) for (h, s, e) in matches]
# remove alias indexes from cui_ids
matches = [(cui_id.split('_')[0], s, e) for (cui_id, s, e) in matches]
matches = [(cui, s, e, ' '.join(tokens[s:e])) for (cui, s, e) in matches]
# sort by num. tokens
matches = sorted(matches, key=lambda x: len(x[-1].split()), reverse=True)
#
if ignore_overlaps:
matches_no_overlaps = []
matched_idxs = set()
for cui, s, e, t in matches:
match_idxs = set(list(range(s, e)))
if len(matched_idxs.intersection(match_idxs)) > 0:
continue
matches_no_overlaps.append((cui, s, e, t))
matched_idxs.update(match_idxs)
matches = matches_no_overlaps
return matches
def match_sts(self, text, ignore_overlaps=True):
#
matches = []
for cui, s, e, t in self.match_cuis(text, ignore_overlaps=ignore_overlaps):
st = self.umls_db.get_sts(cui)[0] # take 1st STY, no scores to compare
matches.append((st, s, e, t))
return matches
def create_matcher(umls_kb, n_max_tokens=5):
#
from nltk.corpus import stopwords
en_stopwords = set(stopwords.words('english'))
fb_punctuation = set('!"#$%&\'()*+,./:;<=>?@[\\]^_`{|}~') # string.punctuation except '-'
# from umls_utils import cui2ent
# from umls_utils import all_cuis
logging.info('Loading scispacy (and nerfing it) ...')
sci_nlp_nerfed = spacy.load('en_core_sci_sm', disable=['tagger', 'parser', 'ner'])
sci_nlp_nerfed.tokenizer = WhitespaceTokenizer(sci_nlp_nerfed.vocab) # enforcing ws tokenizer
logging.info('Loading and adding UMLS aliases ...')
sci_matcher = PhraseMatcher(sci_nlp_nerfed.vocab)
n_added = 0
for cui_idx, cui in enumerate(umls_kb.get_all_cuis()):
if cui_idx % 100000 == 0:
logging.info('at cui #%d/>2.3M, added %d' % (cui_idx, n_added))
# ent = cui2ent(cui)
# if ent is None:
# continue
cui_aliases = set([a.lower() for a in umls_kb.get_aliases(cui, include_name=True)])
cui_aliases = [' '.join(a.split()) for a in cui_aliases] # normalizing ws
# unique_aliases = set([a.lower() for a in ent.aliases])
# unique_aliases.add(ent.canonical_name.lower())
for alias_idx, alias in enumerate(cui_aliases):
if alias in en_stopwords:
continue
elif alias.isnumeric():
continue
alias_chars = set(alias)
if len(alias_chars.intersection(fb_punctuation)) > 0:
continue
alias_doc = sci_nlp_nerfed(alias)
if len(alias_doc) > n_max_tokens: # gets too big without restrictions
continue
cui_id = '%s_%d' % (cui, alias_idx) # otherwise alias gets overwritten for the same cui
sci_matcher.add(cui_id, None, alias_doc)
n_added += 1
logging.info('Pickling [sci_nlp_nerfed, sci_matcher] ...')
phrase_matcher_path = 'models/ExactMatchNER/%s.nerfed_nlp_and_matcher.max%d.p' % (umls_kb.umls_version, n_max_tokens)
with open(phrase_matcher_path, 'wb') as f:
pickle.dump([sci_nlp_nerfed, sci_matcher], f)
logging.info('Done')
if __name__ == '__main__':
# from umls import umls_kb_full as umls_kb
from umls import umls_kb_st21pv as umls_kb
create_matcher(umls_kb, n_max_tokens=3)
# phrase_matcher = ExactMatch_UMLS('models/ExactMatchNER/mm_st21pv.nerfed_nlp_and_matcher.max5.p')
# r = phrase_matcher.match_cuis('1 genus actinokineospora 2')
pass