ECIR 2020 - MedLinker: Medical Entity Linking with Neural Representations and Dictionary Matching
Link to paper: https://link.springer.com/chapter/10.1007/978-3-030-45442-5_29
Note: This is a poorly documented initial release, precipitated by some requests to have access to the code. As I have more time available, and if others remain interested, I'll try to continue improving the codebase and documentation.
After cloning this repository and moving to the root folder, follow the steps below.
UPDATE - Check the discussion here first: danlou#2
This archive contains some data adapted from UMLS, please ensure you have the required license to use it before downloading. Download data.zip (153MB) from Google Drive, and then:
unzip data.zip
Check here for the files you're expected to have in the data/ directory.
If data.zip is not available, the create_umls_kb.py script should help in re-creating the UMLS data required to run MedLinker.
Download models.zip (1.8GB) from Google Drive, and then:
unzip models.zip
Check here for the files you're expected to have in the models/ directory.
conda create -n medlinker python=3.6.5 anaconda
conda activate medlinker
pip install pip==9.0.3
pip install -r requirements.txt
For this initial release, we recommend using MedLinker with the parameters defined in medlinker.py .
You can test if your setup is correctly configured by simply running:
python medlinker.py
After loading the models, you should see the following output:
{'sentence': 'Myeloid derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive activity.',
'tokens': ['Myeloid',
'derived',
'suppressor',
'cells',
'(MDSC)',
'are',
'immature',
'myeloid',
'cells',
'with',
'immunosuppressive',
'activity.'],
'spans': [{'start': 0,
'end': 4,
'text': 'Myeloid derived suppressor cells',
'st': ('T017', 1.0),
'cui': ('C4277543', 1.0)},
{'start': 4,
'end': 5,
'text': '(MDSC)',
'st': ('T017', 0.54723495),
'cui': ('C4277543', 0.99998283)},
{'start': 7,
'end': 9,
'text': 'myeloid cells',
'st': ('T017', 1.0),
'cui': ('C0887899', 1.0)}]}
Which should be reproducible with the following code, and easily adapted for other applications:
from medner import MedNER
from medlinker import MedLinker
from umls import umls_kb_st21pv as umls_kb
# default models, best configuration from paper
# to experiment with different configurations, just comment/uncomment components
cx_ner_path = 'models/ContextualNER/mm_st21pv_SCIBERT_uncased/'
em_ner_path = 'models/ExactMatchNER/umls.2017AA.active.st21pv.nerfed_nlp_and_matcher.max3.p'
ngram_db_path = 'models/SimString/umls.2017AA.active.st21pv.aliases.3gram.5toks.db'
ngram_map_path = 'models/SimString/umls.2017AA.active.st21pv.aliases.5toks.map'
st_vsm_path = 'models/VSMs/mm_st21pv.sts_anns.scibert_scivocab_uncased.vecs'
cui_vsm_path = 'models/VSMs/mm_st21pv.cuis.scibert_scivocab_uncased.vecs'
cui_clf_path = 'models/Classifiers/softmax.cui.h5'
sty_clf_path = 'models/Classifiers/softmax.sty.h5'
cui_val_path = 'models/Validators/mm_st21pv.lr_clf_cui.dev.joblib'
sty_val_path = 'models/Validators/mm_st21pv.lr_clf_sty.dev.joblib'
print('Loading MedNER ...')
medner = MedNER(umls_kb)
medner.load_contextual_ner(cx_ner_path)
print('Loading MedLinker ...')
medlinker = MedLinker(medner, umls_kb)
medlinker.load_string_matcher(ngram_db_path, ngram_map_path) # simstring approximate string matching
# medlinker.load_st_VSM(st_vsm_path)
medlinker.load_sty_clf(sty_clf_path)
# medlinker.load_st_validator(sty_val_path, validator_thresh=0.45)
# medlinker.load_cui_VSM(cui_vsm_path)
medlinker.load_cui_clf(cui_clf_path)
# medlinker.load_cui_validator(cui_val_path, validator_thresh=0.70)
s = 'Myeloid derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive activity.'
r = medlinker.predict(s)
print(r)