Skip to content

ECIR 2020 - MedLinker: Medical Entity Linking with Neural Representations and Dictionary Matching

Notifications You must be signed in to change notification settings

kbiyani33/MedLinker

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MedLinker

ECIR 2020 - MedLinker: Medical Entity Linking with Neural Representations and Dictionary Matching

Link to paper: https://link.springer.com/chapter/10.1007/978-3-030-45442-5_29

Note: This is a poorly documented initial release, precipitated by some requests to have access to the code. As I have more time available, and if others remain interested, I'll try to continue improving the codebase and documentation.

Installation

After cloning this repository and moving to the root folder, follow the steps below.

1. Download and extract data:

UPDATE - Check the discussion here first: danlou#2

This archive contains some data adapted from UMLS, please ensure you have the required license to use it before downloading. Download data.zip (153MB) from Google Drive, and then:

unzip data.zip

Check here for the files you're expected to have in the data/ directory.

If data.zip is not available, the create_umls_kb.py script should help in re-creating the UMLS data required to run MedLinker.

2. Download and extract models:

Download models.zip (1.8GB) from Google Drive, and then:

unzip models.zip

Check here for the files you're expected to have in the models/ directory.

3. Create an environment for this project:

conda create -n medlinker python=3.6.5 anaconda

4. Switch to this environment:

conda activate medlinker

5. Change the default pip version (default breaks installing dependencies):

pip install pip==9.0.3

6. Install dependencies:

pip install -r requirements.txt

Usage

For this initial release, we recommend using MedLinker with the parameters defined in medlinker.py .

You can test if your setup is correctly configured by simply running:

python medlinker.py

After loading the models, you should see the following output:

{'sentence': 'Myeloid derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive activity.',
 'tokens': ['Myeloid',
  'derived',
  'suppressor',
  'cells',
  '(MDSC)',
  'are',
  'immature',
  'myeloid',
  'cells',
  'with',
  'immunosuppressive',
  'activity.'],
 'spans': [{'start': 0,
   'end': 4,
   'text': 'Myeloid derived suppressor cells',
   'st': ('T017', 1.0),
   'cui': ('C4277543', 1.0)},
  {'start': 4,
   'end': 5,
   'text': '(MDSC)',
   'st': ('T017', 0.54723495),
   'cui': ('C4277543', 0.99998283)},
  {'start': 7,
   'end': 9,
   'text': 'myeloid cells',
   'st': ('T017', 1.0),
   'cui': ('C0887899', 1.0)}]}

Which should be reproducible with the following code, and easily adapted for other applications:

from medner import MedNER
from medlinker import MedLinker
from umls import umls_kb_st21pv as umls_kb

# default models, best configuration from paper
# to experiment with different configurations, just comment/uncomment components

cx_ner_path = 'models/ContextualNER/mm_st21pv_SCIBERT_uncased/'
em_ner_path = 'models/ExactMatchNER/umls.2017AA.active.st21pv.nerfed_nlp_and_matcher.max3.p'
ngram_db_path = 'models/SimString/umls.2017AA.active.st21pv.aliases.3gram.5toks.db'
ngram_map_path = 'models/SimString/umls.2017AA.active.st21pv.aliases.5toks.map'
st_vsm_path = 'models/VSMs/mm_st21pv.sts_anns.scibert_scivocab_uncased.vecs'
cui_vsm_path = 'models/VSMs/mm_st21pv.cuis.scibert_scivocab_uncased.vecs'
cui_clf_path = 'models/Classifiers/softmax.cui.h5'
sty_clf_path = 'models/Classifiers/softmax.sty.h5'
cui_val_path = 'models/Validators/mm_st21pv.lr_clf_cui.dev.joblib'
sty_val_path = 'models/Validators/mm_st21pv.lr_clf_sty.dev.joblib'

print('Loading MedNER ...')
medner = MedNER(umls_kb)
medner.load_contextual_ner(cx_ner_path)

print('Loading MedLinker ...')
medlinker = MedLinker(medner, umls_kb)

medlinker.load_string_matcher(ngram_db_path, ngram_map_path)  # simstring approximate string matching

# medlinker.load_st_VSM(st_vsm_path)
medlinker.load_sty_clf(sty_clf_path)
# medlinker.load_st_validator(sty_val_path, validator_thresh=0.45)

# medlinker.load_cui_VSM(cui_vsm_path)
medlinker.load_cui_clf(cui_clf_path)
# medlinker.load_cui_validator(cui_val_path, validator_thresh=0.70)

s = 'Myeloid derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive activity.'
r = medlinker.predict(s)
print(r)

About

ECIR 2020 - MedLinker: Medical Entity Linking with Neural Representations and Dictionary Matching

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.2%
  • Shell 1.8%