forked from danlou/MedLinker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matcher_simstring.py
executable file
·147 lines (103 loc) · 4.65 KB
/
matcher_simstring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import logging
import pickle
from collections import defaultdict
from functools import lru_cache
from simstring.feature_extractor.character_ngram import CharacterNgramFeatureExtractor
from simstring.measure.cosine import CosineMeasure
from simstring.database.dict import DictDatabase
from simstring.searcher import Searcher
from nltk.corpus import stopwords
en_stopwords = set(stopwords.words('english'))
fb_punctuation = set('!"#$%&\'()*+,./:;<=>?@[\\]^_`{|}~') # string.punctuation except '-'
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%d-%b-%y %H:%M:%S')
class SimString_UMLS(object):
def __init__(self, umls_db, db_path, cui_mapping_path, alpha=0.5):
self.db = None
self.umls_db = umls_db
self.cui_mapping = None
self.searcher = None
self.alpha = alpha
self.load(db_path, cui_mapping_path)
def load(self, db_path, cui_mapping_path):
logging.info('Loading DB ...')
with open(db_path, 'rb') as db_f:
self.db = pickle.load(db_f)
logging.info('Loading Mapping ...')
with open(cui_mapping_path, 'rb') as mapping_f:
self.cui_mapping = pickle.load(mapping_f)
logging.info('Creating Searcher ...')
self.searcher = Searcher(self.db, CosineMeasure())
@lru_cache(262144)
def match(self, text):
results = self.searcher.ranked_search(text, alpha=self.alpha)
results = [(a, sim) for sim, a in results] # to be consistent with other matchers
return results
def match_cuis(self, text):
alias_results = self.match(text)
cui_results = []
included_cuis = set()
for alias, sim in alias_results:
for cui in self.cui_mapping[alias]:
if cui not in included_cuis:
cui_results.append((cui, sim))
included_cuis.add(cui)
return cui_results
def match_sts(self, text):
st_results = {}
for cui, sim in self.match_cuis(text):
for st in self.umls_db.get_sts(cui):
if st not in st_results:
st_results[st] = sim
else:
st_results[st] = max(sim, st_results[st])
st_results = list(st_results.items())
st_results = sorted(st_results, key=lambda x: (x[1], x[0]), reverse=True)
return st_results
def create_umls_ss_db(umls_kb, char_ngram_len=3, n_max_tokens=5):
logging.info('Loading scispacy ...')
import spacy
sci_nlp = spacy.load('en_core_sci_md', disable=['tagger', 'parser', 'ner'])
simstring_db = DictDatabase(CharacterNgramFeatureExtractor(char_ngram_len))
# preprocessing aliases and labels
logging.info('Preprocessing aliases ...')
alias_mapping = defaultdict(set)
aliases = []
for cui in umls_kb.get_all_cuis():
cui_aliases = set([a.lower() for a in umls_kb.get_aliases(cui, include_name=True)])
for alias in cui_aliases:
alias_chars = set(alias)
if len(alias_chars.intersection(fb_punctuation)) > 0:
continue
elif alias in en_stopwords:
continue
elif alias.isnumeric():
continue
alias_doc = sci_nlp(alias) # use same tokenizer as when splitting medmentions
if len(alias_doc) > n_max_tokens: # gets too big without restrictions
continue
alias_mapping[alias].add(cui)
aliases.append(alias)
logging.info('Adding to DB ...')
for alias_idx, alias in enumerate(aliases):
simstring_db.add(alias)
if alias_idx % 1000000 == 0:
logging.info('At %d/%d ...' % (alias_idx, len(aliases)))
# setting paths
db_path = '%s.aliases.%dgram.%dtoks.db' % (umls_kb.umls_version, char_ngram_len, n_max_tokens)
map_path = '%s.aliases.%dtoks.map' % (umls_kb.umls_version, n_max_tokens)
logging.info('Storing DB ...')
with open(db_path, 'wb') as f:
pickle.dump(simstring_db, f)
logging.info('Storing Alias Mapping ...')
with open(map_path, 'wb') as f:
alias_mapping = dict(alias_mapping)
pickle.dump(alias_mapping, f)
if __name__ == '__main__':
# ngram_db_path = 'models/SimString/mm_st21pv.umls_aliases.3gram.5toks.db'
# ngram_map_path = 'models/SimString/mm_st21pv.umls_aliases.5toks.map'
# umls_string_matcher = SimString_UMLS(ngram_db_path, ngram_map_path)
# r = umls_string_matcher.match('apoptosis')
from umls import umls_kb_st21pv as umls_kb
create_umls_ss_db(umls_kb, char_ngram_len=3, n_max_tokens=5)