forked from danlou/MedLinker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedner.py
executable file
·97 lines (68 loc) · 2.96 KB
/
medner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import logging
import numpy as np
from functools import lru_cache
from allennlp.predictors.predictor import Predictor
from allennlp.data.tokenizers.word_splitter import JustSpacesWordSplitter
from allennlp.data.dataset_readers.dataset_utils.span_utils import bioul_tags_to_spans
from matcher_exactmatch import WhitespaceTokenizer
from matcher_exactmatch import ExactMatch_UMLS
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%d-%b-%y %H:%M:%S')
class MedNER(object):
def __init__(self, umls_kb):
self.umls_kb = umls_kb
self.contextual_ner = None
self.contextual_ner_labels = []
self.exactmatch_ner = None
def load_contextual_ner(self, path, ws_tokenizer=True):
#
logging.info('Loading Contextual NER ...')
self.contextual_ner = Predictor.from_path(path, cuda_device=0)
if ws_tokenizer:
# switch-off tokenizer (expect pretokenized, space-separated strings)
self.contextual_ner._tokenizer = JustSpacesWordSplitter()
# load labels (to use logits, wip)
self.contextual_ner_labels = []
with open(path+'vocabulary/labels.txt', 'r') as labels_f:
for line in labels_f:
self.contextual_ner_labels.append(line.strip())
def load_exactmatch_ner(self, path):
#
logging.info('Loading ExactMatch NER ...')
self.exactmatch_ner = ExactMatch_UMLS(self.umls_kb, path)
def predict_exactmatch(self, tokens):
#
em_results = self.exactmatch_ner.match_cuis(' '.join(tokens))
em_spans = []
for (_, s, e, text) in em_results:
assert tokens[s:e] == text.split() # sanity check
em_spans.append((s, e))
return tokens, em_spans
def predict_contextual(self, sentence):
#
cx_results = self.contextual_ner.predict(sentence)
tokens = cx_results['words']
cx_spans = bioul_tags_to_spans(cx_results['tags'])
cx_spans = [(s, e + 1) for l, (s, e) in cx_spans] # consistent with em
return tokens, cx_spans
@lru_cache(262144)
def predict(self, sentence):
#
if self.contextual_ner is not None:
return self.predict_contextual(sentence)
elif self.exactmatch_ner is not None:
tokens = sentence.split() # exactmatch expects pre-tokenized with ws
return self.predict_exactmatch(tokens)
else:
# TO-DO: raise warning
pass
return None, None
if __name__ == '__main__':
from umls import umls_kb_st21pv as umls_kb
cx_ner_path = 'models/ContextualNER/mm_st21pv_SCIBERT_uncased/'
medner = MedNER(umls_kb)
medner.load_contextual_ner(cx_ner_path)
s = 'Myeloid derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive activity.'
tokens, spans = medner.predict(s)
print(tokens, spans)