Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
kbkartik authored Apr 6, 2021
0 parents commit f4f98df
Show file tree
Hide file tree
Showing 18 changed files with 720 additions and 0 deletions.
35 changes: 35 additions & 0 deletions Captcha_Preprocessing.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
% Author: Kartik Bharadwaj

I = imread('download9.png');
J = rgb2gray(I); % RGB to Gray conversion

%Image preprocessing

K = bwareaopen(J,100,8); % Elimination of small pixel coagulation using
% connected components
K1 = ~K;
K1 = im2uint8(K1);
K1 = K1 > 135;
K1 = imclearborder(K1); %Eliminates pixels which are attached to image boundary
K2 = bwmorph(K1,'spur',8);
K3 = bwmorph(K2,'clean');
K4 = bwmorph(K3,'bridge',Inf);

%Applying filters

h1 = fspecial('gaussian', 2, 1);
h2 = fspecial('average', 2);
g = imfilter(K4,h1, 'replicate');
g1 = imfilter(g,h2, 'replicate');

%Marking characters in Captcha
[B, L, N, A] = bwboundaries(g1, 'holes');
s = regionprops(L,'all');
imshow(~g1)
hold on
for k = 1:length(B)
boundary = B{k};
if k <= N
plot(boundary(:,2), boundary(:,1))
end
end
62 changes: 62 additions & 0 deletions Captcha_Segmentation.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
% Author: Kartik Bharadwaj

origImg = imread('Final_test_processed.png');
[rows, columns, ColorChannels] = size(origImg);

%User prompt for changing color image to grayscale

if ColorChannels > 1
Message = sprintf('Your image file has %d color channels.\nDo you want to convert it to grayscale?', ColorChannels);
button = questdlg(Message, 'Convert and Continue', 'Cancel');
if strcmp(button, 'Cancel')
fprintf(1, 'Exited Captcha_Segmentation.m.\n');
return;
end
origImg = rgb2gray(origImg);
end

%Thresholding
thresholdVal = 100;
bnyImg = origImg < thresholdVal;

%Getting connected component labels of the image
labelImg = bwlabel(bnyImg, 8);

%Getting region properties of the labels
blobMeasurementsval = regionprops(labelImg, origImg, 'all');
totalBlobs = size(blobMeasurementsval, 1);

imshow(origImg);
axis image;
hold on;
boundaries = bwboundaries(bnyImg);
numberOfBoundaries = size(boundaries, 1);
for k = 1 : numberOfBoundaries
thisBoundary = boundaries{k};
plot(thisBoundary(:,2), thisBoundary(:,1), 'g', 'LineWidth', 2);
end
hold off;

Blobareas = [blobMeasurementsval.Area];
selectedareaindex = (Blobareas > 6000) & (Blobareas < 12000);

finalIndex = find(selectedareaindex);
finalBlobsImg = ismember(labelImg, finalIndex);
CharacterImg = bwlabel(finalBlobsImg, 8);

%Image Cropping and Segmentation
message = sprintf('Would you like to crop out each character to individual images?');
reply = questdlg(message, 'Extract Individual Images?', 'Yes', 'No');
if strcmpi(reply, 'Yes')
figure;
% Maximize window.
set(gcf, 'Units','Normalized','OuterPosition',[0 0 1 1]);
for k = 1 : length(finalIndex) % Loop through all blobs.
% Find the bounding box of each blob.
finalblobsBoundingBox = blobMeasurementsval(finalIndex(k)).BoundingBox;
singlecharacter = imcrop(origImg, finalblobsBoundingBox);
%imwrite(singlechar,'truth.png');
subplot(3, 4, k);
imshow(singlecharacter);
end
end
Binary file added Final_test_processed.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
54 changes: 54 additions & 0 deletions ImageProc_NN/checkNNGradients.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
function checkNNGradients(lambda)
%CHECKNNGRADIENTS Creates a small neural network to check the
%backpropagation gradients
% CHECKNNGRADIENTS(lambda) Creates a small neural network to check the
% backpropagation gradients, it will output the analytical gradients
% produced by your backprop code and the numerical gradients (computed
% using computeNumericalGradient). These two gradient computations should
% result in very similar values.
%

if ~exist('lambda', 'var') || isempty(lambda)
lambda = 0;
end

input_layer_size = 3;
hidden_layer_size1 = 5;
hidden_layer_size2 = 5;
num_labels = 3;
m = 5;

% We generate some 'random' test data
Theta1 = debugInitializeWeights(hidden_layer_size1, input_layer_size);
Theta2 = debugInitializeWeights(hidden_layer_size2, hidden_layer_size1);
Theta3 = debugInitializeWeights(num_labels, hidden_layer_size2);
% Reusing debugInitializeWeights to generate X
X = debugInitializeWeights(m, input_layer_size - 1);
y = 1 + mod(1:m, num_labels)';

% Unroll parameters
nn_params = [Theta1(:) ; Theta2(:) ; Theta3(:)];

% Short hand for cost function
costFunc = @(p) nnCostFunction(p, input_layer_size, hidden_layer_size1, ...
hidden_layer_size2, num_labels, X, y, lambda);

[cost, grad] = costFunc(nn_params);
numgrad = computeNumericalGradient(costFunc, nn_params);

% Visually examine the two gradient computations. The two columns
% you get should be very similar.
disp([numgrad grad]);
fprintf(['The above two columns you get should be very similar.\n' ...
'(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n']);

% Evaluate the norm of the difference between two solutions.
% If you have a correct implementation, and assuming you used EPSILON = 0.0001
% in computeNumericalGradient.m, then diff below should be less than 1e-9
diff = norm(numgrad-grad)/norm(numgrad+grad);

fprintf(['If your backpropagation implementation is correct, then \n' ...
'the relative difference will be small (less than 1e-9). \n' ...
'\nRelative Difference: %g\n'], diff);

end
29 changes: 29 additions & 0 deletions ImageProc_NN/computeNumericalGradient.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
function numgrad = computeNumericalGradient(J, theta)
%COMPUTENUMERICALGRADIENT Computes the gradient using "finite differences"
%and gives us a numerical estimate of the gradient.
% numgrad = COMPUTENUMERICALGRADIENT(J, theta) computes the numerical
% gradient of the function J around theta. Calling y = J(theta) should
% return the function value at theta.

% Notes: The following code implements numerical gradient checking, and
% returns the numerical gradient.It sets numgrad(i) to (a numerical
% approximation of) the partial derivative of J with respect to the
% i-th input argument, evaluated at theta. (i.e., numgrad(i) should
% be the (approximately) the partial derivative of J with respect
% to theta(i).)
%

numgrad = zeros(size(theta));
perturb = zeros(size(theta));
e = 1e-4;
for p = 1:numel(theta)
% Set perturbation vector
perturb(p) = e;
loss1 = J(theta - perturb);
loss2 = J(theta + perturb);
% Compute Numerical Gradient
numgrad(p) = (loss2 - loss1) / (2*e);
perturb(p) = 0;
end

end
22 changes: 22 additions & 0 deletions ImageProc_NN/debugInitializeWeights.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
function W = debugInitializeWeights(fan_out, fan_in)
%DEBUGINITIALIZEWEIGHTS Initialize the weights of a layer with fan_in
%incoming connections and fan_out outgoing connections using a fixed
%strategy, this will help you later in debugging
% W = DEBUGINITIALIZEWEIGHTS(fan_in, fan_out) initializes the weights
% of a layer with fan_in incoming connections and fan_out outgoing
% connections using a fix set of values
%
% Note that W should be set to a matrix of size(1 + fan_in, fan_out) as
% the first row of W handles the "bias" terms
%

% Set W to zeros
W = zeros(fan_out, 1 + fan_in);

% Initialize W using "sin", this ensures that W is always of the same
% values and will be useful for debugging
W = reshape(sin(1:numel(W)), size(W)) / 10;

% =========================================================================

end
84 changes: 84 additions & 0 deletions ImageProc_NN/dip_net.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
% Initialization
clear ; close all; clc

% Parameters setup
input_layer_size = 784; % 28x28 Input Images of Digits
hidden_layer_size1 = 150; % 150 hidden units
hidden_layer_size2 = 150; % 150 hidden units
num_labels = 26; % 26 labels, from 1 to 26

% Load Training Data
fprintf('Loading and Visualizing Data ...\n')

load('letterstrain.mat');
m = size(X, 1);
X = double(X);

% Randomly select 100 data points to display
sel = randperm(size(X, 1));
sel = sel(1:100);

displayData(X(sel, :));

fprintf('Program paused. Press enter to continue.\n');
pause;

fprintf('\nInitializing Neural Network Parameters ...\n')

initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size1);
initial_Theta2 = randInitializeWeights(hidden_layer_size1, hidden_layer_size2);
initial_Theta3 = randInitializeWeights(hidden_layer_size2, num_labels);

initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:) ; initial_Theta3(:)];

fprintf('\nChecking Backpropagation... \n');

checkNNGradients;

fprintf('\nProgram paused. Press enter to continue.\n');
pause;

fprintf('\nChecking Backpropagation (w/ Regularization) ... \n')

% Check gradients by running checkNNGradients
lambda = 3;
checkNNGradients(lambda);

debug_J = nnCostFunction(initial_nn_params, input_layer_size, ...
hidden_layer_size1, hidden_layer_size2, num_labels, X, y, lambda);

fprintf(['\n\nCost at (fixed) debugging parameters (w/ lambda = %f): %f ' ...
], lambda, debug_J);

fprintf('Program paused. Press enter to continue.\n');
pause;

fprintf('\nTraining Neural Network... \n')

options = optimset('MaxIter', 800);

lambda = 1;

% Create "short hand" for the cost function to be minimized
costFunction = @(p) nnCostFunction(p, ...
input_layer_size, ...
hidden_layer_size1, ...
hidden_layer_size2, ...
num_labels, X, y, lambda);

[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);

Theta1 = reshape(nn_params(1:hidden_layer_size1 * (input_layer_size + 1)), hidden_layer_size1, (input_layer_size + 1));
temp1 = 1+ (hidden_layer_size1 * (input_layer_size + 1));
temp2 = (hidden_layer_size1) * (hidden_layer_size2 + 1);
Theta2 = reshape(nn_params(temp1:(temp1 + temp2 - 1)),...
hidden_layer_size1, (hidden_layer_size2 + 1));
Theta3 = reshape(nn_params((temp1 + temp2):end), num_labels, (hidden_layer_size2 + 1));

fprintf('Program paused. Press enter to continue.\n');
pause;

load('letterstest.mat');
pred = predict(Theta1, Theta2, Theta3, double(Xtest));

fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == ytest)) * 100);
59 changes: 59 additions & 0 deletions ImageProc_NN/displayData.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
function [h, display_array] = displayData(X, example_width)
%DISPLAYDATA Display 2D data in a nice grid
% [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
% stored in X in a nice grid. It returns the figure handle h and the
% displayed array if requested.

% Set example_width automatically if not passed in
if ~exist('example_width', 'var') || isempty(example_width)
example_width = round(sqrt(size(X, 2)));
end

% Gray Image
colormap(gray);

% Compute rows, cols
[m n] = size(X);
example_height = (n / example_width);

% Compute number of items to display
display_rows = floor(sqrt(m));
display_cols = ceil(m / display_rows);

% Between images padding
pad = 1;

% Setup blank display
display_array = - ones(pad + display_rows * (example_height + pad), ...
pad + display_cols * (example_width + pad));

% Copy each example into a patch on the display array
curr_ex = 1;
for j = 1:display_rows
for i = 1:display_cols
if curr_ex > m,
break;
end
% Copy the patch

% Get the max value of the patch
max_val = max(abs(X(curr_ex, :)));
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
reshape(X(curr_ex, :), example_height, example_width) / max_val;
curr_ex = curr_ex + 1;
end
if curr_ex > m,
break;
end
end

% Display Image
h = imagesc(display_array, [-1 1]);

% Do not show axis
axis image off

drawnow;

end
Loading

0 comments on commit f4f98df

Please sign in to comment.