Skip to content

An example of how to install the NVIDIA GPU operator on your Kubernetes cluster and scale your machine learning with Kerberos Vault.

License

Notifications You must be signed in to change notification settings

kerberos-io/nvidia-gpu-kubernetes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 

Repository files navigation

NVIDIA operator on Kubernetes with Kerberos Vault

Machine learning using the NVIDIA GPU operator with Kerberos Vault on Kubernetes. Integrate and scale your Machine learning using Kerberos Vault and a GPU node-based Kubernetes Cluster.

In this example we will show you how you can use Kerberos Agents and Kerberos Vault to scale your machine learning and video surveillance or analytics landscape. By decoupling your cameras and GPU's using the Kubernetes platform and Kerberos Enterprise you bring real scale into the picture.

NVIDIA operator Kerberos Vault

The following example will show you how to setup a node with one or more GPU's in a Kubernetes Cluster. Afterwards we will deploy a machine learning workload that can recognise pedestrians in one or more recordings. To handle that execution we have a couple of cameras in place (called Kerberos agents) and our open/extensible storage platform called Kerberos Vault.

NVIDIA integration with kafka

Kerberos Vault receives recordings from one or more (or thousands) of Kerberos agents, and will trigger events through integrations such as Kafka, SQS, etc. Everytime a recording is stored in Kerberos Vault, a real-time message is generated, and a consumer (the workload we have deployed in our cluster) will download the recording and start the interference on one of you GPU based Kubernetes nodes (using the NVIDIA operator).

Prepare a node to run GPU based deployments

NV-GPU-Operator-1

To provision GPU worker nodes in a Kubernetes cluster, the following NVIDIA software components are required – the driver, container runtime, device plugin and monitoring. As shown in Figure 1, these components need to be manually provisioned before GPU resources are available to the cluster and also need to be managed during the operation of the cluster. The GPU Operator simplifies both the initial deployment and management of the components by containerizing all the components and using standard Kubernetes APIs for automating and managing these components including versioning and upgrades. The GPU operator is fully open-source and is available at the NVIDIA GitHub repo.

GPU-Operator-Manual-Install-Figure

NVidia Drivers

We are assuming an Ubuntu 20.4 system with a clean installation. First things first, let's go ahead with installing the NVIDIA drivers and CUDA drivers.

sudo -s
apt install nvidia-driver-455
reboot

sudo -s
apt install nvidia-cuda-toolkit
apt install nvidia-utils-455
nvidia-smi

Setup tools

Once we have the NVIDIA drivers installed, we are ready to setup Docker and Kubernetes. Next to that we will enable NVIDIA for Docker and later on we will install the NVIDIA Kubernetes operator.

Install Docker

Let's install Docker. We could also use containerd with Kubernetes.

apt install docker.io -y    

Once installed modify the cgroup driver, so kubernetes will be using it correctly. By default Kubernetes cgroup driver was set to systems but docker was set to systemd.

sudo mkdir /etc/docker
cat <<EOF | sudo tee /etc/docker/daemon.json
{
  "exec-opts": ["native.cgroupdriver=systemd"],
  "log-driver": "json-file",
  "log-opts": {
    "max-size": "100m"
  },
  "storage-driver": "overlay2"
}
EOF

sudo systemctl enable docker
sudo systemctl daemon-reload
sudo systemctl restart docker

Install Kubernetes

Install the Kubernetes toolset.

apt update -y
apt install apt-transport-https curl -y
curl -fsSL https://pkgs.k8s.io/core:/stable:/v1.28/deb/Release.key | sudo gpg --dearmor -o /etc/apt/keyrings/kubernetes-apt-keyring.gpg
echo 'deb [signed-by=/etc/apt/keyrings/kubernetes-apt-keyring.gpg] https://pkgs.k8s.io/core:/stable:/v1.28/deb/ /' | sudo tee /etc/apt/sources.list.d/kubernetes.list
apt update -y
apt install -y kubeadm=1.28.1-1.1 kubelet=1.28.1-1.1 kubectl=1.28.1-1.1

Disable swap as this is required by Kubernetes.

swapoff -a
sudo sed -i.bak '/ swap / s/^\(.*\)$/#\1/g' /etc/fstab

Initiate the cluster.

kubeadm init

This might take a couple of minutes but once finished you should see following message.

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

  mkdir -p $HOME/.kube
  sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -g) $HOME/.kube/config

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
  https://kubernetes.io/docs/concepts/cluster-administration/addons/

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join 192.168.1.103:6443 --token ej7ckt.uof7o2iplqf0r2up \
    --discovery-token-ca-cert-hash sha256:9cbcc00d34be2dbd605174802d9e52fbcdd617324c237bf58767b369fa586209

Install NVIDIA for Docker

To enable NVIDIA for Docker, a couple of things will need to be installed.

distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
   && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
   && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
   
   apt-get update
   apt-get install -y nvidia-docker2
   systemctl restart docker
   docker run --rm --gpus all nvidia/cuda:11.1.1-base-ubi8 nvidia-smi

Make an additional modification to the daemon.json of Docker.

    nano /etc/docker/daemon.json

Make sure the .json file is aligned with below config.

{
    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
        }
    },
    "exec-opts": ["native.cgroupdriver=systemd"],
    "log-driver": "json-file",
    "log-opts": {
        "max-size": "100m"
    },
    "storage-driver": "overlay2"
}

Restart the Docker daemon to complete the installation after setting the default runtime:

sudo systemctl restart docker

or Install NVIDIA for containerd

Update containerd to use nvidia as the default runtime and add nvidia runtime configuration. This can be done by adding below config to /etc/containerd/config.toml and restarting containerd service.

version = 2
[plugins]
  [plugins."io.containerd.grpc.v1.cri"]
    [plugins."io.containerd.grpc.v1.cri".containerd]
      default_runtime_name = "nvidia"

      [plugins."io.containerd.grpc.v1.cri".containerd.runtimes]
        [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nvidia]
          privileged_without_host_devices = false
          runtime_engine = ""
          runtime_root = ""
          runtime_type = "io.containerd.runc.v2"
          [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nvidia.options]
            BinaryName = "/usr/bin/nvidia-container-runtime"

Restart the Containerd daemon to complete the installation after setting the default runtime:

sudo systemctl restart containerd

Enable NVidia GPU operator

Find the full tutorial on the official NVIDIA docs page.

Download the NVIDIA helm chart

helm repo add nvidia https://helm.ngc.nvidia.com/nvidia && helm repo update

Install the NVIDIA helm chart in the gpu-operator namespace.

helm install --wait --generate-name \
-n gpu-operator --create-namespace \
nvidia/gpu-operator

Create a GPU workload and scale with Kerberos Vault

When creating a new pod or deployment, you assign a number of GPUs to the workload, this will make sure the workload is scheduled on a node which has one or more GPUs available. Magic, all done by the NVIDIA Kubernetes operator. So the conclusion is that you can add as much nodes and GPUs you want, and you can simply increase the replicas: 1 parameter to the number of GPUs you have available.

Integration in practice (Yolov3)

Once you have created below deployment in your Kubernetes cluster, you will have one or more machine learning workloads integrated with your Kerberos Vault and Kafka broker. Due to the nature of Kafka, and how we designed the Kerberos Enterprise suite, it will also loadbalance or divide and concur the request over your different GPU's. Have some fun ;)

apiVersion: apps/v1
kind: Deployment
metadata:
  name: vault-ml
  labels:
    app: vault-ml
spec:
  replicas: 1
  selector:
    matchLabels:
      app: vault-ml
  template:
    metadata:
      labels:
        app: vault-ml
    spec:
      containers:
        - name: kerberoshub-ml
          image: kerberos/vault-ml:nvidia
          resources:
            limits:
              nvidia.com/gpu: 1 # requesting a single GPU
          env:
            - name: QUEUE_SYSTEM
              value: "KAFKA"
            - name: QUEUE_NAME
              value: "source_topic" # This is the topic of kafka we will read messages from.
            - name: QUEUE_TARGET
              value: "target_topic" # Once we processed the recording with ML, we will send results/metadata to a target topic of Kafka.
            - name: KAFKA_BROKER
              value: "xxx-your-kafka-xxx:9092"
            - name: KAFKA_GROUP
              value: "group"
            - name: KAFKA_USERNAME
              value: "xxx"
            - name: KAFKA_PASSWORD
              value: "xxx"
            - name: KAFKA_MECHANISM
              value: "PLAIN"
            - name: KAFKA_SECURITY
              value: "SASL_SSL"
            - name: VAULT_API_URL
              value: "https://xxx.api.vault.kerberos.live"
            - name: VAULT_ACCESS_KEY
              value: "xxx"
            - name: VAULT_SECRET_KEY
              value: "xxx"
            - name: NUMBER_OF_PREDICTIONS
              value: "5"

The results you will show when inspect the logs of vault-ml is:

{"date": 1630643468, "data": {"probabilities": [[0.5907418131828308], [0.7311708927154541], [0.555280864238739], [0.5144052505493164]], "labels": [["car"], ["truck"], ["truck"], ["car"]], "boxes": [[[298, 36, 398, 79]], [[514, 53, 656, 129]], [[514, 53, 656, 127]], [[315, 101, 351, 125]]]}, "operation": "classification", "events": ["monitor", "sequence", "analysis", "throttler", "notification"], "provider": "kstorage", "request": "persist", "payload": {"key": "youruser/1630643468_6-967003_highway4_200-200-400-400_24_769.mp4", "fileSize": 4545863, "is_fragmented": false, "metadata": {"uploadtime": "1630643468", "event-instancename": "highway4", "event-timestamp": "1630643468", "productid": "Bfuk14xm40eMSxwEEyrd908yzmDIwKp5", "event-numberofchanges": "24", "event-microseconds": "0", "event-regioncoordinates": "200-200-400-400", "capture": "IPCamera", "event-token": "0", "publickey": "ABCDEFGHI!@#$%12345"}, "bytes_ranges": "", "bytes_range_on_time": null}, "source": "storj"}
next..
checking..
[{'date': 1630643550, 'events': ['monitor', 'sequence', 'analysis', 'throttler', 'notification'], 'provider': 'kstorage', 'request': 'persist', 'payload': {'key': 'youruser/1630643550_6-967003_highway4_200-200-400-400_24_769.mp4', 'fileSize': 7589031, 'is_fragmented': False, 'metadata': {'uploadtime': '1630643550', 'event-instancename': 'highway4', 'event-timestamp': '1630643550', 'productid': 'Bfuk14xm40eMSxwEEyrd908yzmDIwKp5', 'event-numberofchanges': '24', 'event-microseconds': '0', 'event-regioncoordinates': '200-200-400-400', 'capture': 'IPCamera', 'event-token': '0', 'publickey': 'ABCDEFGHI!@#$%12345'}, 'bytes_ranges': '', 'bytes_range_on_time': None}, 'source': 'storj'}]
{'date': 1630643550, 'events': ['monitor', 'sequence', 'analysis', 'throttler', 'notification'], 'provider': 'kstorage', 'request': 'persist', 'payload': {'key': 'youruser/1630643550_6-967003_highway4_200-200-400-400_24_769.mp4', 'fileSize': 7589031, 'is_fragmented': False, 'metadata': {'uploadtime': '1630643550', 'event-instancename': 'highway4', 'event-timestamp': '1630643550', 'productid': 'Bfuk14xm40eMSxwEEyrd908yzmDIwKp5', 'event-numberofchanges': '24', 'event-microseconds': '0', 'event-regioncoordinates': '200-200-400-400', 'capture': 'IPCamera', 'event-token': '0', 'publickey': 'ABCDEFGHI!@#$%12345'}, 'bytes_ranges': '', 'bytes_range_on_time': None}, 'source': 'storj'}
{"date": 1630643550, "data": {"probabilities": [[0.9019190669059753], [0.8251644968986511], [0.8919550776481628, 0.5001923441886902], [0.8414549231529236], [0.8807628750801086, 0.5700141787528992], [0.8745995759963989]], "labels": [["traffic light"], ["traffic light"], ["traffic light", "car"], ["traffic light"], ["traffic light", "train"], ["traffic light"]], "boxes": [[[489, 375, 525, 455]], [[488, 373, 525, 456]], [[488, 376, 525, 455], [682, 191, 752, 234]], [[489, 376, 525, 454]], [[488, 375, 525, 455], [18, 64, 419, 496]], [[489, 376, 525, 455]]]}, "operation": "classification", "events": ["monitor", "sequence", "analysis", "throttler", "notification"], "provider": "kstorage", "request": "persist", "payload": {"key": "youruser/1630643550_6-967003_highway4_200-200-400-400_24_769.mp4", "fileSize": 7589031, "is_fragmented": false, "metadata": {"uploadtime": "1630643550", "event-instancename": "highway4", "event-timestamp": "1630643550", "productid": "Bfuk14xm40eMSxwEEyrd908yzmDIwKp5", "event-numberofchanges": "24", "event-microseconds": "0", "event-regioncoordinates": "200-200-400-400", "capture": "IPCamera", "event-token": "0", "publickey": "ABCDEFGHI!@#$%12345"}, "bytes_ranges": "", "bytes_range_on_time": null}, "source": "storj"}
next..
checking..

About

An example of how to install the NVIDIA GPU operator on your Kubernetes cluster and scale your machine learning with Kerberos Vault.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published