Skip to content

Commit

Permalink
Cadence - Add RNNT joiner from torchaudio (pytorch#3920)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: pytorch#3920

As titled.

Reviewed By: tarun292

Differential Revision: D58271588

fbshipit-source-id: e1e1d33a5a28ec2c0147b79b6e48cf59bdd01b7e
  • Loading branch information
mcremon-meta authored and facebook-github-bot committed Jun 11, 2024
1 parent 53d0025 commit 2152d79
Showing 1 changed file with 65 additions and 0 deletions.
65 changes: 65 additions & 0 deletions examples/cadence/models/rnnt_joiner.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# Example script for exporting simple models to flatbuffer

import logging

import torch

from executorch.backends.cadence.aot.ops_registrations import * # noqa

from typing import Tuple

from executorch.backends.cadence.aot.export_example import export_model


FORMAT = "[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s"
logging.basicConfig(level=logging.INFO, format=FORMAT)


if __name__ == "__main__":

class Joiner(torch.nn.Module):
def __init__(
self, input_dim: int, output_dim: int, activation: str = "relu"
) -> None:
super().__init__()
self.linear = torch.nn.Linear(input_dim, output_dim, bias=True)
if activation == "relu":
# pyre-fixme[4]: Attribute must be annotated.
self.activation = torch.nn.ReLU()
elif activation == "tanh":
self.activation = torch.nn.Tanh()
else:
raise ValueError(f"Unsupported activation {activation}")

def forward(
self,
source_encodings: torch.Tensor,
target_encodings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
joint_encodings = (
source_encodings.unsqueeze(2).contiguous()
+ target_encodings.unsqueeze(1).contiguous()
)
activation_out = self.activation(joint_encodings)
output = self.linear(activation_out)
return output

# Joiner
model = Joiner(256, 128)

# Get dummy joiner inputs
source_encodings = torch.randn(1, 25, 256)
target_encodings = torch.randn(1, 10, 256)

example_inputs = (
source_encodings,
target_encodings,
)

export_model(model, example_inputs)

0 comments on commit 2152d79

Please sign in to comment.