Skip to content

Commit

Permalink
Halve model loading time for llama demo on iOS (pytorch#4032)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: pytorch#4032

mmap is not recommended for large sequential workloads -- you
have to take a bunch of page faults. I originally assumed this would hurt peak memory usage (we read all the weights into memory at once and then pack them; packing is basically copying them), but it doesn't. In retrospect, this makes sense because we actually operate on one weights tensor at a time, and the individual tensors aren't gigantic, there are just a lot of them.

Reviewed By: larryliu0820

Differential Revision: D58826044

fbshipit-source-id: 1a4e8a3522d5e24b56687bebd1f0f92e5514aff2
  • Loading branch information
swolchok authored and facebook-github-bot committed Jul 2, 2024
1 parent 01a1b28 commit 8740c69
Show file tree
Hide file tree
Showing 3 changed files with 16 additions and 4 deletions.
16 changes: 12 additions & 4 deletions examples/models/llama2/runner/runner.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
#else /* BPE */
#include <executorch/examples/models/llama2/tokenizer/bpe_tokenizer.h>
#endif /* ET_USE_TIKTOKEN*/
#include <executorch/extension/data_loader/file_data_loader.h>
#include <executorch/extension/evalue_util/print_evalue.h>
#include <executorch/extension/runner_util/managed_tensor.h>

Expand Down Expand Up @@ -42,9 +43,7 @@ Runner::Runner(
const std::string& model_path,
const std::string& tokenizer_path,
const float temperature)
: module_(std::make_unique<Module>(
model_path,
Module::MlockConfig::UseMlockIgnoreErrors)),
: model_path_(model_path),
tokenizer_path_(tokenizer_path),
temperature_(temperature) {
ET_LOG(
Expand All @@ -55,13 +54,22 @@ Runner::Runner(
}

bool Runner::is_loaded() const {
return module_->is_loaded() && tokenizer_ && sampler_;
return module_ && module_->is_loaded() && tokenizer_ && sampler_;
}

Error Runner::load() {
if (is_loaded()) {
return Error::Ok;
}
// NOTE: we observed ~2x loading performance increase on iPhone 15
// and a ~5% improvement on Galaxy S22 by switching to
// FileDataLoader instead of MmapDataLoader + UseMlockIgnoreErrors.
auto data_loader_result = util::FileDataLoader::from(model_path_.c_str());
if (!data_loader_result.ok()) {
return data_loader_result.error();
}
module_ = std::make_unique<Module>(
std::make_unique<util::FileDataLoader>(std::move(*data_loader_result)));
ET_CHECK_OK_OR_RETURN_ERROR(module_->load_method("forward"));

// Read out metadata: vocab_size (expected by the model), BOS, EOS, n_BOS,
Expand Down
1 change: 1 addition & 0 deletions examples/models/llama2/runner/runner.h
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,7 @@ class Runner {
bool use_sdpa_with_kv_cache_;
bool append_eos_;
std::unordered_set<std::string> model_methods_;
std::string model_path_;
std::unique_ptr<Module> module_;
std::string tokenizer_path_;
float temperature_;
Expand Down
3 changes: 3 additions & 0 deletions examples/models/llama2/runner/targets.bzl
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,9 @@ def define_common_targets():
visibility = [
"@EXECUTORCH_CLIENTS",
],
deps = [
"//executorch/extension/data_loader:file_data_loader",
],
exported_deps = [
"//executorch/backends/xnnpack:xnnpack_backend",
"//executorch/examples/models/llama2/sampler:sampler" + aten_suffix,
Expand Down

0 comments on commit 8740c69

Please sign in to comment.