forked from pytorch/executorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Updating cadence ops with new name space, rebasing 6 optimized ops (p…
…ytorch#6407) * Main backup (#12) * Add nnlib as submodule * Adding nnlib submodule * Integrated nnlib API unde backends/cadence/hifi * Fix review comments on PR#3 * Add nnlib as submodule * Adding nnlib submodule * Integrated nnlib API unde backends/cadence/hifi * Fix review comments on PR#3 * Incorporated feedback from Meta team. * lint errors fixed * Adding Sub operator optimized version * Add optimization for add, mul operators * Adding Div operator * Modified div mod to cover truncate and floor modes --------- Co-authored-by: cad-audio <[email protected]> Co-authored-by: cad-audio <[email protected]> * Adding sigmoid optimizations * Adding tanh optimizations * Fixing review comments in 5483 * Adding cflags to prevent compilation halts * Adding cflags to prevent compilation halts * Changing name space of optimized ops; Remove unused ops from file * fixed lint issues. * Namespace updates for cadence ops, adding 6 optimized ops --------- Co-authored-by: cad-audio <[email protected]> Co-authored-by: cad-audio <[email protected]>
- Loading branch information
1 parent
5a34bc1
commit 979708d
Showing
16 changed files
with
3,595 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
/* | ||
* Copyright (c) Meta Platforms, Inc. and affiliates. | ||
* All rights reserved. | ||
* | ||
* This source code is licensed under the BSD-style license found in the | ||
* LICENSE file in the root directory of this source tree. | ||
*/ | ||
|
||
#include <executorch/backends/cadence/hifi/kernels/kernels.h> | ||
#include <executorch/kernels/portable/cpu/scalar_utils.h> | ||
#include <executorch/kernels/portable/cpu/util/broadcast_util.h> | ||
#include <executorch/kernels/portable/cpu/util/functional_util.h> | ||
#include <executorch/kernels/portable/cpu/util/kernel_ops_util.h> | ||
#include <executorch/runtime/kernel/kernel_includes.h> | ||
#include <executorch/runtime/platform/assert.h> | ||
|
||
using exec_aten::Scalar; | ||
using exec_aten::ScalarType; | ||
using exec_aten::Tensor; | ||
using executorch::runtime::can_cast; | ||
using executorch::runtime::CppTypeToScalarType; | ||
using executorch::runtime::KernelRuntimeContext; | ||
using torch::executor::Error; | ||
|
||
namespace impl { | ||
namespace HiFi { | ||
namespace native { | ||
|
||
namespace { | ||
template < | ||
bool can_cast, | ||
typename CTYPE_A, | ||
typename CTYPE_B, | ||
typename CTYPE_IN, | ||
typename CTYPE_OUT> | ||
struct AddInner; | ||
|
||
template < | ||
typename CTYPE_A, | ||
typename CTYPE_B, | ||
typename CTYPE_IN, | ||
typename CTYPE_OUT> | ||
struct AddInner<true, CTYPE_A, CTYPE_B, CTYPE_IN, CTYPE_OUT> { | ||
static void | ||
run(const Tensor& a, const Tensor& b, CTYPE_IN alpha_val, Tensor& out) { | ||
torch::executor::apply_binary_elementwise_fn<CTYPE_A, CTYPE_B, CTYPE_OUT>( | ||
// NOLINTNEXTLINE(facebook-hte-ConstantArgumentPassByValue) | ||
[alpha_val](const CTYPE_A val_a, const CTYPE_B val_b) { | ||
CTYPE_IN a_casted = static_cast<CTYPE_IN>(val_a); | ||
CTYPE_IN b_casted = static_cast<CTYPE_IN>(val_b); | ||
CTYPE_IN value = a_casted + alpha_val * b_casted; | ||
|
||
return static_cast<CTYPE_OUT>(value); | ||
}, | ||
a, | ||
b, | ||
out); | ||
} | ||
}; | ||
|
||
template <typename CTYPE_IN> | ||
struct ReportCanCastBug { | ||
static void run(const Tensor&, const Tensor&, CTYPE_IN, Tensor&) { | ||
ET_DCHECK_MSG(false, "BUG: canCast should have been checked above"); | ||
} | ||
}; | ||
|
||
template < | ||
typename CTYPE_A, | ||
typename CTYPE_B, | ||
typename CTYPE_IN, | ||
typename CTYPE_OUT> | ||
struct AddInner<false, CTYPE_A, CTYPE_B, CTYPE_IN, CTYPE_OUT> | ||
: public ReportCanCastBug<CTYPE_IN> {}; | ||
|
||
} // namespace | ||
|
||
Tensor& add_out( | ||
KernelRuntimeContext& ctx, | ||
const Tensor& a, | ||
const Tensor& b, | ||
const Scalar& alpha, | ||
Tensor& out) { | ||
ET_KERNEL_CHECK( | ||
ctx, | ||
torch::executor::resize_to_broadcast_target_size(a, b, out) == Error::Ok, | ||
InvalidArgument, | ||
out); | ||
|
||
ET_KERNEL_CHECK( | ||
ctx, | ||
executorch::runtime::tensor_is_realhbbf16_type(out), | ||
InvalidArgument, | ||
out); | ||
ET_KERNEL_CHECK( | ||
ctx, | ||
executorch::runtime::tensors_have_same_dim_order(a, b, out), | ||
InvalidArgument, | ||
out); | ||
|
||
ScalarType a_type = a.scalar_type(); | ||
ScalarType b_type = b.scalar_type(); | ||
ScalarType alpha_type = | ||
torch::executor::native::utils::get_scalar_dtype(alpha); | ||
ScalarType common_type = | ||
executorch::runtime::promoteTypes(a_type, b_type, /*half_to_float*/ true); | ||
ScalarType out_type = out.scalar_type(); | ||
|
||
ET_KERNEL_CHECK( | ||
ctx, | ||
executorch::runtime::canCast(common_type, out_type), | ||
InvalidArgument, | ||
out); | ||
ET_KERNEL_CHECK( | ||
ctx, | ||
torch::executor::check_alpha_type(alpha_type, common_type), | ||
InvalidArgument, | ||
out); | ||
|
||
float alpha_val; | ||
torch::executor::native::utils::extract_scalar(alpha, &alpha_val); | ||
|
||
constexpr auto name = "add.out"; | ||
constexpr int kNnlibMaxDim = 4; /*fallback if broadcast and dim > 4 */ | ||
|
||
int a_dim = a.dim(), b_dim = b.dim(), out_dim = out.dim(); | ||
bool optimized = 1; | ||
/*find broadcast*/ | ||
const bool a_is_broadcasted = !out.sizes().equals(a.sizes()); | ||
const bool b_is_broadcasted = !out.sizes().equals(b.sizes()); | ||
const bool broadcast = (a_is_broadcasted || b_is_broadcasted); | ||
int max_dim = a.dim() > b.dim() ? a.dim() : b.dim(); | ||
max_dim = out.dim() > max_dim ? out.dim() : max_dim; | ||
|
||
if ((out_type != ScalarType::Float) || (alpha_val != 1.0)) | ||
optimized = 0; | ||
|
||
if ((a_dim == 0) || (b_dim == 0)) | ||
optimized = 0; | ||
|
||
if ((broadcast == 1) && (max_dim > kNnlibMaxDim)) | ||
optimized = 0; | ||
|
||
if (optimized) { | ||
const float* const a_data = a.const_data_ptr<float>(); | ||
const float* const b_data = b.const_data_ptr<float>(); | ||
float* const out_data = out.mutable_data_ptr<float>(); | ||
|
||
if (broadcast == 1) { | ||
int out_shape[kNnlibMaxDim]; | ||
int inp1_shape[kNnlibMaxDim]; | ||
int inp2_shape[kNnlibMaxDim]; | ||
|
||
for (int i = 0; i < kNnlibMaxDim; i++) { | ||
out_shape[i] = 1; | ||
inp1_shape[i] = 1; | ||
inp2_shape[i] = 1; | ||
} | ||
|
||
int off_o = kNnlibMaxDim - out.dim(); | ||
int off_a = kNnlibMaxDim - a.dim(); | ||
int off_b = kNnlibMaxDim - b.dim(); | ||
|
||
for (int i = 0; i < out.dim(); i++) | ||
out_shape[i + off_o] = out.size(i); | ||
for (int i = 0; i < a.dim(); i++) | ||
inp1_shape[i + off_a] = a.size(i); | ||
for (int i = 0; i < b.dim(); i++) | ||
inp2_shape[i + off_b] = b.size(i); | ||
|
||
xa_nn_elm_add_broadcast_4D_f32xf32_f32( | ||
out_data, out_shape, a_data, inp1_shape, b_data, inp2_shape); | ||
} else { | ||
xa_nn_elm_add_f32xf32_f32(out_data, a_data, b_data, out.numel()); | ||
} | ||
|
||
return out; | ||
} | ||
|
||
ET_SWITCH_REALHBBF16_TYPES(a_type, ctx, name, CTYPE_A, [&]() { | ||
ET_SWITCH_REALHBBF16_TYPES(b_type, ctx, name, CTYPE_B, [&]() { | ||
using CTYPE_IN = typename torch::executor:: | ||
promote_types<CTYPE_A, CTYPE_B, /*half_to_float*/ true>::type; | ||
ET_DCHECK(CppTypeToScalarType<CTYPE_IN>::value == common_type); | ||
CTYPE_IN alpha_val; | ||
torch::executor::native::utils::extract_scalar(alpha, &alpha_val); | ||
|
||
ET_SWITCH_REALHBBF16_TYPES(out_type, ctx, name, CTYPE_OUT, [&]() { | ||
AddInner< | ||
can_cast<CTYPE_IN, CTYPE_OUT>::value, | ||
CTYPE_A, | ||
CTYPE_B, | ||
CTYPE_IN, | ||
CTYPE_OUT>::run(a, b, alpha_val, out); | ||
}); | ||
}); | ||
}); | ||
|
||
return out; | ||
} | ||
|
||
} // namespace native | ||
} // namespace HiFi | ||
} // namespace impl |
Oops, something went wrong.