Skip to content

kozuedoingregression/Iris-Species-Classification

Repository files navigation

Iris Species Classification Web App 🌸

A Flask-based web application that predicts Iris flower species using machine learning. The application uses a trained model to classify Iris flowers into three species: Setosa, Versicolor, and Virginica, based on their sepal and petal measurements.

Features ✨

  • Interactive web interface for input measurements
  • Real-time predictions using machine learning
  • Simple and intuitive design

Demo 🚀

Application Demo

Installation 🛠️

  1. Clone the repository:
git clone https://github.com/kozuedoingregression/Iris-Species-Classification.git
cd Iris-Species-Classification
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install required packages:
pip install -r requirements.txt

Usage 💻

  1. Start the Flask application:
python app.py
  1. Enter the following measurements in centimeters:

    • Sepal Length
    • Sepal Width
    • Petal Length
    • Petal Width
  2. Click "Predict" to see the classification result

  3. Run tests

python -m unittest testing.py

Project Structure 📁

iris-classification/
├── database/
│   ├── Iris.xls
├── model/
│   ├──IrisFlowerClaffification.pkl
├── templates/
│   ├── index.html
├── app.py              # Flask application
├── requirements.txt
├── testing.py

Model Performance 📊

  • The model was trained using scikit-learn's Logistic Regression on the Iris Dataset.
  • Accuracy: 97%
  • NoteBook

Technical Details 🔧

  • Framework: Flask
  • Machine Learning: scikit-learn
  • Model: Logistic Regression
  • Dataset: Iris Dataset
  • Frontend: HTML, CSS, JavaScript

Requirements 📋

  • Python 3.8+
  • Flask
  • scikit-learn
  • pandas
  • numpy

Development 👨‍💻

To contribute to this project:

  1. Fork the repository
  2. Create a new branch
  3. Make your changes
  4. Submit a pull request

Contact 📧

For questions or feedback, please contact:

Releases

No releases published

Packages

No packages published