A Flask-based web application that predicts Iris flower species using machine learning. The application uses a trained model to classify Iris flowers into three species: Setosa, Versicolor, and Virginica, based on their sepal and petal measurements.
- Interactive web interface for input measurements
- Real-time predictions using machine learning
- Simple and intuitive design
- Clone the repository:
git clone https://github.com/kozuedoingregression/Iris-Species-Classification.git
cd Iris-Species-Classification
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install required packages:
pip install -r requirements.txt
- Start the Flask application:
python app.py
-
Enter the following measurements in centimeters:
- Sepal Length
- Sepal Width
- Petal Length
- Petal Width
-
Click "Predict" to see the classification result
-
Run tests
python -m unittest testing.py
iris-classification/
├── database/
│ ├── Iris.xls
├── model/
│ ├──IrisFlowerClaffification.pkl
├── templates/
│ ├── index.html
├── app.py # Flask application
├── requirements.txt
├── testing.py
- The model was trained using scikit-learn's Logistic Regression on the Iris Dataset.
- Accuracy: 97%
- NoteBook
- Framework: Flask
- Machine Learning: scikit-learn
- Model: Logistic Regression
- Dataset: Iris Dataset
- Frontend: HTML, CSS, JavaScript
- Python 3.8+
- Flask
- scikit-learn
- pandas
- numpy
To contribute to this project:
- Fork the repository
- Create a new branch
- Make your changes
- Submit a pull request
For questions or feedback, please contact:
- X: kozue
- GitHub: kozuedoingregression