Skip to content

krishpop/CHER

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

CHER: Curriculum-guided Hindsight Experience Replay

Environments

Tasks

The environments are from OpenAI Gym. They are as follows:

  • FetchReach-v1
  • HandReach-v0
  • HandManipulateEggFull-v0
  • HandManipulateBlockRotateXYZ-v0
  • HandManipulatePenRotate-v0

Baselines

CHER
|-- baselines
    |-- cher
        |-- config_curriculum.py
        |-- ...
    |-- her
    |-- herebp

DDPG and DDPG+HER are from OpenAI baselines.

DDPG+HEREBP is from EnergyBasedPrioritization. We just add the environments used in the CHER paper with a minor modification.

How to install

Dependicies

  • python 3.5
  • gym 0.12.5
  • mujoco-py 2.0.2.0
  • baselines 0.1.5
  • Scikit-learn 0.21.3

Please install them at first.

CHER

cd CHER
python install -e .

How to train

Use FetchReach as an example

Note: if use HandManipulate environments, please run with 20 CPU cores.

cd CHER/baselines/cher/experiment/
python train.py --env_name FetchReach-v1 --seed 0 --num_cpu 1  --n_epochs 50 --logdir fetchreachv1/cpu1ep50/alg=DDPG+CHER=/r0

Similar in DDPG, DDPG+HER, DDPG+HEREBP.

Citation

Please cite our NeurIPS paper if you use this repository in your publications:

@inproceedings{
fang2019cher,
title={Curriculum-guided Hindsight Experience Replay},
author={Meng Fang and Tianyi Zhou and Yali Du and Lei Han and Zhengyou Zhang},
booktitle={Advances in Neural Information Processing Systems},
year={2019},
}

Poster

This browser does not support PDFs. Please download the PDF to view it: Download PDF.

Licence

The MIT License

About

Curriculum-guided Hindsight Experience Replay (NeurIPS-2019)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%