-
Notifications
You must be signed in to change notification settings - Fork 2.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
161 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
'''ShuffleNetV2 in PyTorch. | ||
See the paper "ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" for more details. | ||
''' | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
|
||
class ShuffleBlock(nn.Module): | ||
def __init__(self, groups=2): | ||
super(ShuffleBlock, self).__init__() | ||
self.groups = groups | ||
|
||
def forward(self, x): | ||
'''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]''' | ||
N, C, H, W = x.size() | ||
g = self.groups | ||
return x.view(N, g, C/g, H, W).permute(0, 2, 1, 3, 4).reshape(N, C, H, W) | ||
|
||
|
||
class SplitBlock(nn.Module): | ||
def __init__(self, ratio): | ||
super(SplitBlock, self).__init__() | ||
self.ratio = ratio | ||
|
||
def forward(self, x): | ||
c = int(x.size(1) * self.ratio) | ||
return x[:, :c, :, :], x[:, c:, :, :] | ||
|
||
|
||
class BasicBlock(nn.Module): | ||
def __init__(self, in_channels, split_ratio=0.5): | ||
super(BasicBlock, self).__init__() | ||
self.split = SplitBlock(split_ratio) | ||
in_channels = int(in_channels * split_ratio) | ||
self.conv1 = nn.Conv2d(in_channels, in_channels, | ||
kernel_size=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(in_channels) | ||
self.conv2 = nn.Conv2d(in_channels, in_channels, | ||
kernel_size=3, stride=1, padding=1, groups=in_channels, bias=False) | ||
self.bn2 = nn.BatchNorm2d(in_channels) | ||
self.conv3 = nn.Conv2d(in_channels, in_channels, | ||
kernel_size=1, bias=False) | ||
self.bn3 = nn.BatchNorm2d(in_channels) | ||
self.shuffle = ShuffleBlock() | ||
|
||
def forward(self, x): | ||
x1, x2 = self.split(x) | ||
out = F.relu(self.bn1(self.conv1(x2))) | ||
out = self.bn2(self.conv2(out)) | ||
out = F.relu(self.bn3(self.conv3(out))) | ||
out = torch.cat([x1, out], 1) | ||
out = self.shuffle(out) | ||
return out | ||
|
||
|
||
class DownBlock(nn.Module): | ||
def __init__(self, in_channels, out_channels): | ||
super(DownBlock, self).__init__() | ||
mid_channels = out_channels // 2 | ||
# left | ||
self.conv1 = nn.Conv2d(in_channels, in_channels, | ||
kernel_size=3, stride=2, padding=1, groups=in_channels, bias=False) | ||
self.bn1 = nn.BatchNorm2d(in_channels) | ||
self.conv2 = nn.Conv2d(in_channels, mid_channels, | ||
kernel_size=1, bias=False) | ||
self.bn2 = nn.BatchNorm2d(mid_channels) | ||
# right | ||
self.conv3 = nn.Conv2d(in_channels, mid_channels, | ||
kernel_size=1, bias=False) | ||
self.bn3 = nn.BatchNorm2d(mid_channels) | ||
self.conv4 = nn.Conv2d(mid_channels, mid_channels, | ||
kernel_size=3, stride=2, padding=1, groups=mid_channels, bias=False) | ||
self.bn4 = nn.BatchNorm2d(mid_channels) | ||
self.conv5 = nn.Conv2d(mid_channels, mid_channels, | ||
kernel_size=1, bias=False) | ||
self.bn5 = nn.BatchNorm2d(mid_channels) | ||
|
||
self.shuffle = ShuffleBlock() | ||
|
||
def forward(self, x): | ||
# left | ||
out1 = self.bn1(self.conv1(x)) | ||
out1 = F.relu(self.bn2(self.conv2(out1))) | ||
# right | ||
out2 = F.relu(self.bn3(self.conv3(x))) | ||
out2 = self.bn4(self.conv4(out2)) | ||
out2 = F.relu(self.bn5(self.conv5(out2))) | ||
# concat | ||
out = torch.cat([out1, out2], 1) | ||
out = self.shuffle(out) | ||
return out | ||
|
||
|
||
class ShuffleNetV2(nn.Module): | ||
def __init__(self, net_size): | ||
super(ShuffleNetV2, self).__init__() | ||
out_channels = configs[net_size]['out_channels'] | ||
num_blocks = configs[net_size]['num_blocks'] | ||
|
||
self.conv1 = nn.Conv2d(3, 24, kernel_size=3, | ||
stride=2, padding=1, bias=False) | ||
self.bn1 = nn.BatchNorm2d(24) | ||
self.in_channels = 24 | ||
self.layer1 = self._make_layer(out_channels[0], num_blocks[0]) | ||
self.layer2 = self._make_layer(out_channels[1], num_blocks[1]) | ||
self.layer3 = self._make_layer(out_channels[2], num_blocks[2]) | ||
self.linear = nn.Linear(out_channels[2], 10) | ||
|
||
def _make_layer(self, out_channels, num_blocks): | ||
layers = [DownBlock(self.in_channels, out_channels)] | ||
for i in range(num_blocks): | ||
layers.append(BasicBlock(out_channels)) | ||
self.in_channels = out_channels | ||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
out = F.relu(self.bn1(self.conv1(x))) | ||
# out = F.max_pool2d(out, 3, stride=2, padding=1) | ||
out = self.layer1(out) | ||
out = self.layer2(out) | ||
out = self.layer3(out) | ||
out = F.avg_pool2d(out, 2) | ||
out = out.view(out.size(0), -1) | ||
out = self.linear(out) | ||
return out | ||
|
||
|
||
configs = { | ||
0.5: { | ||
'out_channels': (48, 96, 192), | ||
'num_blocks': (3, 7, 3) | ||
}, | ||
|
||
1: { | ||
'out_channels': (116, 232, 464), | ||
'num_blocks': (3, 7, 3) | ||
}, | ||
1.5: { | ||
'out_channels': (176, 352, 704), | ||
'num_blocks': (3, 7, 3) | ||
}, | ||
2: { | ||
'out_channels': (224, 488, 976), | ||
'num_blocks': (3, 7, 3) | ||
} | ||
} | ||
|
||
|
||
def test(): | ||
net = ShuffleNetV2(net_size=0.5) | ||
x = torch.randn(3, 3, 32, 32) | ||
y = net(x) | ||
print(y.shape) | ||
|
||
|
||
# test() |