This code is for paper Fine-tune BERT for Extractive Summarization
(https://arxiv.org/pdf/1903.10318.pdf)
Results on CNN/Dailymail (25/3/2019):
Models | ROUGE-1 | ROUGE-2 | ROUGE-3 |
---|---|---|---|
Transformer Baseline | 40.9 | 18.02 | 37.17 |
BERTSUM+Classifier | 43.23 | 20.22 | 39.60 |
BERTSUM+Transformer | 43.25 | 20.24 | 39.63 |
BERTSUM+LSTM | 43.22 | 20.17 | 39.59 |
Python version: This code is in Python3.6
Package Requirements: pytorch pytorch_pretrained_bert tensorboardX multiprocess pyrouge
Some codes are borrowed from ONMT(https://github.com/OpenNMT/OpenNMT-py)
download https://drive.google.com/open?id=1-NJKRoNzk2ugjjB2mfnmpR15KYB_Fr0s
unzip the zipfile and put all .pt
files into bert_data
Download and unzip the stories
directories from here for both CNN and Daily Mail. Put all .stroy
files in one directory (e.g. ../raw_stories
)
We will need Stanford CoreNLP to tokenize the data. Download it here and unzip it. Then add the following command to your bash_profile:
export CLASSPATH=/path/to/stanford-corenlp-full-2017-06-09/stanford-corenlp-3.8.0.jar
replacing /path/to/
with the path to where you saved the stanford-corenlp-full-2017-06-09
directory.
python preprocess.py -mode tokenize -raw_path RAW_PATH -save_path TOKENIZED_PATH
RAW_PATH
is the directory containing story files (../raw_stories
),JSON_PATH
is the target directory to save the generated json files (../merged_stories_tokenized
)
python preprocess.py -mode format_to_lines -raw_path RAW_PATH -save_path JSON_PATH -map_path MAP_PATH -lower
RAW_PATH
is the directory containing tokenized files (../merged_stories_tokenized
),JSON_PATH
is the target directory to save the generated json files (../json_data/cnndm
),MAP_PATH
is the directory containing the urls files (../urls
)
python preprocess.py -mode format_to_bert -raw_path JSON_PATH -save_path BERT_DATA_PATH -oracle_mode greedy -n_cpus 4 -log_file ../logs/preprocess.log
-
JSON_PATH
is the directory containing json files (../json_data
),BERT_DATA_PATH
is the target directory to save the generated binary files (../bert_data
) -
-oracle_mode
can begreedy
orcombination
, wherecombination
is more accurate but takes much longer time to process
First run: For the first time, you should use single-GPU, so the code can download the BERT model. Change -visible_gpus 0,1,2 -gpu_ranks 0,1,2 -world_size 3
to -visible_gpus 0 -gpu_ranks 0 -world_size 1
, after downloading, you could kill the process and rerun the code with multi-GPUs.
To train the BERT+Classifier model, run:
python train.py -mode train -encoder classifier -dropout 0.1 -bert_data_path ../bert_data/cnndm -model_path ../models/bert_classifier -lr 2e-3 -visible_gpus 0,1,2 -gpu_ranks 0,1,2 -world_size 3 -report_every 50 -save_checkpoint_steps 1000 -batch_size 3000 -decay_method noam -train_steps 50000 -accum_count 2 -log_file ../logs/bert_classifier -use_interval true -warmup_steps 10000
To train the BERT+Transformer model, run:
python train.py -mode train -encoder transformer -dropout 0.1 -bert_data_path ../bert_data/cnndm -model_path ../models/bert_transformer -lr 2e-3 -visible_gpus 0,1,2 -gpu_ranks 0,1,2 -world_size 3 -report_every 50 -save_checkpoint_steps 1000 -batch_size 3000 -decay_method noam -train_steps 50000 -accum_count 2 -log_file ../logs/bert_transformer -use_interval true -warmup_steps 10000 -ff_size 2048 -inter_layers 2 -heads 8
To train the BERT+RNN model, run:
python train.py -mode train -encoder rnn -dropout 0.1 -bert_data_path ../bert_data/cnndm -model_path ../models/bert_rnn -lr 2e-3 -visible_gpus 0,1,2 -gpu_ranks 0,1,2 -world_size 3 -report_every 50 -save_checkpoint_steps 1000 -batch_size 3000 -decay_method noam -train_steps 50000 -accum_count 2 -log_file ../logs/bert_rnn -use_interval true -warmup_steps 10000 -rnn_size 768 -dropout 0.1
-mode
can be {train, validate, test
}, wherevalidate
will inspect the model directory and evaluate the model for each newly saved checkpoint,test
need to be used with-test_from
, indicating the checkpoint you want to use
After the training finished, run
python train.py -mode validate -bert_data_path ../bert_data/cnndm -model_path MODEL_PATH -visible_gpus 0 -gpu_ranks 0 -batch_size 30000 -log_file LOG_FILE -result_path RESULT_PATH -test_all -block_trigram true
MODEL_PATH
is the directory of saved checkpointsRESULT_PATH
is where you want to put decoded summaries (default../results/cnndm
)