The code of AAAI2021 paper Few-Shot Learning for Multi-label Intent Detection.
The code framework is based on few-shot learning platform: MetaDialog.
python >= 3.6
pytorch >= 1.5.0
transformers >= 2.8.0
allennlp >= 0.8.2
tqdm >= 4.33.0
Down the pytorch bert model, or convert tensorflow param yourself as follow:
export BERT_BASE_DIR=/users4/ythou/Projects/Resources/bert-base-uncased/uncased_L-12_H-768_A-12/
pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch
$BERT_BASE_DIR/bert_model.ckpt
$BERT_BASE_DIR/bert_config.json
$BERT_BASE_DIR/pytorch_model.bin
Set BERT path in the ./utils/config.py
Get data at ./data/
Full data is available by contacting me, or you can generate it by your self:
Set test, train, dev data file path in ./scripts/
We provide a generation tool for converting normal data into few-shot/meta-episode style. See details at here
Execute the command line to run with scripts:
source ./scripts/run_1_shot_slot_tagging.sh [gpu_id]
We provide all scripts for experiment at ./scripts/
, and you can also directly run with ./main.py
.
bert based scripts:
run_b_stanford_1_main.sh
run_b_stanford_5_main.sh
run_b_toursg_1_main.sh
run_b_toursg_5_main.sh
electra based scripts:
run_e_stanford_1_main.sh
run_e_stanford_5_main.sh
run_e_toursg_1_main.sh
run_e_toursg_5_main.sh
- script:
scripts/get_tag_data_from_training_dataset.py
- operation:
- change the parameters called
MODEL_DIR
andDATA_DIR
- change the parameters called
- command:
python scripts/get_tag_data_from_training_dataset.py