Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

feat(topology/algebra/infinite_sum): Multiplicativise #18405

Closed
wants to merge 18 commits into from
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions src/analysis/normed/group/infinite_sum.lean
Original file line number Diff line number Diff line change
Expand Up @@ -32,24 +32,24 @@ open finset filter metric

variables {ι α E F : Type*} [seminormed_add_comm_group E] [seminormed_add_comm_group F]

lemma cauchy_seq_finset_iff_vanishing_norm {f : ι → E} :
lemma cauchy_seq_finset_sum_iff_vanishing_norm {f : ι → E} :
cauchy_seq (λ s : finset ι, ∑ i in s, f i) ↔
∀ε > (0 : ℝ), ∃s:finset ι, ∀t, disjoint t s → ‖ ∑ i in t, f i ‖ < ε :=
begin
rw [cauchy_seq_finset_iff_vanishing, nhds_basis_ball.forall_iff],
rw [cauchy_seq_finset_sum_iff_vanishing, nhds_basis_ball.forall_iff],
{ simp only [ball_zero_eq, set.mem_set_of_eq] },
{ rintros s t hst ⟨s', hs'⟩,
exact ⟨s', λ t' ht', hst $ hs' _ ht'⟩ }
end

lemma summable_iff_vanishing_norm [complete_space E] {f : ι → E} :
summable f ↔ ∀ε > (0 : ℝ), ∃s:finset ι, ∀t, disjoint t s → ‖ ∑ i in t, f i ‖ < ε :=
by rw [summable_iff_cauchy_seq_finset, cauchy_seq_finset_iff_vanishing_norm]
by rw [summable_iff_cauchy_seq_finset, cauchy_seq_finset_sum_iff_vanishing_norm]

lemma cauchy_seq_finset_of_norm_bounded_eventually {f : ι → E} {g : ι → ℝ} (hg : summable g)
(h : ∀ᶠ i in cofinite, ‖f i‖ ≤ g i) : cauchy_seq (λ s, ∑ i in s, f i) :=
begin
refine cauchy_seq_finset_iff_vanishing_norm.2 (λ ε hε, _),
refine cauchy_seq_finset_sum_iff_vanishing_norm.2 (λ ε hε, _),
rcases summable_iff_vanishing_norm.1 hg ε hε with ⟨s, hs⟩,
refine ⟨s ∪ h.to_finset, λ t ht, _⟩,
have : ∀ i ∈ t, ‖f i‖ ≤ g i,
Expand Down
Loading