A small zero-dependency queues library that let's users create complex async tasks pipelines using interconnected queues.
A nice analogy is multiple airport counters and their corresponding queues of people structured in a way to optimize for least possible waiting time for a person on average.
// yarn
yarn add superqueue@https://github.com/libkakashi/superqueue
// npm
npm i https://github.com/libkakashi/superqueue
const videosQueue = await youtube.getChannelVideos(channelId); // Queue<VideoSnippetResponse>
const dbVideos = await prisma.video.findMany({where: {channelId}});
const dbVideosIndex = dbVideos.reduce(
(acc, video) => ({[video.id]: video, ...acc}),
{} as {[key: string]: Video}
);
const idsQueue = videosQueue.pipe(video => video.resourceId!.videoId!);
const [filteredIdsQueue, cachedIdsQueue] = ignoreCache
? [idsQueue.pipe(videoId => ({videoId})), Queue.fromArray([])]
: idsQueue
.pipe(videoId => {
if (!dbVideosIndex[videoId]) return videoId;
logger.info(`Already commited ${videoId}`);
return undefined;
})
.usplit(async videoId => {
if (await storage.exists(`transcript/${videoId}.vtt`)) {
logger.info(`Found transcript for ${videoId} in cache`);
return [{videoId}, 1];
}
return [{videoId}, 0];
}, 16);
type BaseQueueData = {videoId: string; metadata: VideoMetadata};
const getMetadatas = async (ids: string[]) => {
const metadatas = await youtube.getVideosMetadata(ids);
return metadatas.map((metadata, i) => ({videoId: ids[i], metadata}));
};
const metadatasQueue = filteredIdsQueue
.batch(50)
.upipe(batch => getMetadatas(batch.map(({videoId}) => videoId)))
.flat();
const cachedMetadatasQueue = cachedIdsQueue
.batch(50)
.upipe(batch => getMetadatas(batch.map(({videoId}) => videoId)))
.flat();
const [englishVideosQueue, otherVideosQueue] = metadatasQueue.split(
({videoId, metadata}) => {
if (
!metadata.defaultAudioLanguage ||
englishLangCodes.includes(
metadata.defaultAudioLanguage as EnglishLangCode
)
) {
return [{videoId, metadata}, 0];
}
logger.warn(`Skipping ${videoId} - ${metadata.defaultAudioLanguage}`);
return [{videoId, metadata}, 1];
}
);
const [goodSubtitlesQueue, badSubtitlesQueue] = englishVideosQueue.usplit<
BaseQueueData & {transcriptPath: string},
BaseQueueData
>(async ({videoId, metadata}) => {
try {
const data = {
videoId: videoId,
metadata: metadata,
transcriptPath: await youtube.downloadSubtitles(videoId),
};
return [data, 0];
} catch (e) {
logger.error((e as Error).message);
return [{videoId, metadata}, 1];
}
}, 8);
// and so on
constructor()
: Initializes a new instance of theQueue
class.
-
push(...vals: T[]): void
: Pushes one or more values onto the queue. -
end(): void
: Marks the queue as ended. -
waitForEnd(): Promise<void>
: Returns a promise that resolves when the queue ends. -
collect
(): Promise<T[]>
: Converts the queue into an array. Collects all elements of the queue into an array and returns a promise that resolves to this array when the queue ends.const myQueue = new Queue<number>(); myQueue.collect().then(console.log); // Pushing values into the queue myQueue.push(1, 2, 3, 4); await sleep(1000); myQueue.push(5, 6, 7, 8); myQueue.end(); console.log('Queue ended'); // Output: // Queue ended // [1, 2, 3, 4, 5, 6, 7, 8]
-
pushCount(): number
: Returns the number of items that have been pushed into the queue.const myQueue = new Queue<string>(); myQueue.push('apple'); console.log(myQueue.pushCount()); myQueue.push('banana'); console.log(myQueue.pushCount()); // Output: // 1 // 2
-
size(): number
: Returns the current size of the queue.const myQueue = new Queue<string>(); myQueue.push('apple', 'banana'); myQueue.end(); console.log('Size before consuming:', myQueue.size()); console.log('Push count before consuming:', myQueue.pushCount()); await myQueue.map((_ = _)); // consume the queue console.log('Size after consuming:', myQueue.size()); console.log('Push count after consuming:', myQueue.pushCount()); // Output: // Size before consuming: 2 // Push count before consuming: 2 // Size after consuming: 0 // Push count after consuming: 2
-
map(callback: (v: T) => void): Promise<void>
: Applies the provided callback function to each item in the queue.const stringQueue = new Queue<string>(); stringQueue.push('apple'); // Applying a callback to each item stringQueue.map(item => console.log(item.toUpperCase())); stringQueue.push('banana', 'cherry'); // Output: // APPLE // BANANA // CHERRY
-
pipe<U>(callback: (v: T) => U | undefined): Queue<U>
: Transforms the queue's elements using the given callback function and returns a new queue with the transformed elements.const numberQueue = Queue.fromArray([1, 2, 3, 4, 5]); // Processing items and filtering out even numbers const filteredQueue = numberQueue.pipe(num => { if (num % 2 !== 0) { return num * 2; // Double all odd numbers } // Drop all even numbers return undefined; }); filteredQueue.collect().then(console.log); // Output: [2, 6, 10]
-
split<U, V = U>(callback: (v: T) => [U, 0] | [V, 1]): [Queue<U>, Queue<V>]
: Splits the queue into two separate queues based on a callback function.const queue = Queue.fromArray([1, 2, 3, 4, 5, 6]); // Splitting the queue into even and odd numbers const [evenQueue, oddQueue] = queue.split(num => { return num % 2 === 0 ? [num, 0] : [num, 1]; }); evenQueue.collect().then(array => console.log('Even:', array)); oddQueue.collect().then(array => console.log('Odd:', array)); // Output: // Even: [2, 4, 6] // Odd: [1, 3, 5]
-
mapParallel(callback: (v: T) => Promise<void>, n: number = 8): Promise<void>
: Similar tomap
, but processes items in parallel up ton
at a time. Then+1
th call is made when any one of the firstn
calls finishes, such that there are alwaysn
calls running in parallel.const asyncQueue = Queue.fromArray([1, 2, 3, 4, 5, 6, 7, 8]); let lastTimestamp = Date.now(); asyncQueue.mapParallel(async item => { await sleep(1000); const newTimestamp = Date.now(); console.log(`Processed ${item} in ${newTimestamp - lastTimestamp}ms`); lastTimestamp = newTimestamp; }, 4); // Output: // Processed 1 in 1004ms // Processed 2 in 5ms // Processed 3 in 1ms // Processed 4 in 0ms // Processed 5 in 999ms // Processed 6 in 6ms // Processed 7 in 0ms // Processed 8 in 0ms
-
upipe<U>(callback: (v: T) => Promise<U | undefined>, n: number = 8): Queue<U>
: Unordered version ofpipe
, processing items in parallel. -
usplit<U, V = U>(callback: (v: T) => Promise<[U, 0] | [V, 1] | undefined>, n: number = 8): [Queue<U>, Queue<V>]
: Unordered version ofsplit
, processing items in parallel and splitting them into two queues based on a callback function. -
umerge(q: Queue<T>): Queue<T>
: Merges the current queue with another queue in an unordered manner.const queue1 = new Queue<number>(); const queue2 = new Queue<number>(); queue1.push(1); queue1.push(2); queue2.push(3); queue2.push(4); queue1.end(); queue2.end(); const mergedQueue = queue1.umerge(queue2); const mergedArray = await mergedQueue.collect(); console.log('Merged Array:', mergedArray); // Output: // Merged Array: [1, 2, 3, 4]
-
batch(n: number): Queue<T[]>
: Groups the queue's elements into batches of sizen
.const batchQueue = Queue.fromArray([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]); // Creating batches of size 3 const batchedQueue = batchQueue.batch(3); batchedQueue.map(batch => console.log(batch)); // Output: // [1, 2, 3] // [4, 5, 6] // [7, 8, 9] // [10]
-
flat(): Queue<T extends Array<infer U> ? U : never>
: Flattens the queue's elements if they are arrays.const batchQueue = new Queue<number>(); batchQueue.push(1, 2, 3); const asyncBatchCall = async (array: number[]) => { await sleep(1000); return array.map(a => a * 2); }; const outQueue = batchQueue.batch(3).upipe(asyncBatchCall).flat(); outQueue.map(res => console.log(res)); // Output: // 2 // 2 // 6
ended: boolean
: Indicates whether the queue has ended.piped: boolean
: Indicates whether the queue has been piped.
static fromArray<T>(array: Array<T>): Queue<T>
: Creates a new queue from an array. The queue is ended at the time of creation itself. Further elements cannot be pushed.
- Methods that start with
u
(e.g.,upipe
,usplit
,umerge
) are unordered methods, which means the order of elements is lost going from the input queue to the output queue. You're not supposed to make any assumptions at all about the order of the elements. - It's very easy to inadvertently misuse the queues or overlook certain error conditions. Please be very cautious while handling errors, especially with the unordered methods.