Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rename PCA to PrincipalComponentAnalysis #96

Merged
merged 1 commit into from
May 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions include/tapkee/defines/methods.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -123,10 +123,10 @@ static const DimensionReductionMethod StochasticProximityEmbedding("Stochastic P

/** Kernel PCA as described in
* @cite Scholkopf1997 */
static const DimensionReductionMethod KernelPCA("Kernel Principal Component Analysis (KPCA)", RequiresKernel);
static const DimensionReductionMethod KernelPrincipalComponentAnalysis("Kernel Principal Component Analysis (KPCA)", RequiresKernel);

/** Principal Component Analysis */
static const DimensionReductionMethod PCA("Principal Component Analysis (PCA)", RequiresFeatures);
static const DimensionReductionMethod PrincipalComponentAnalysis("Principal Component Analysis (PCA)", RequiresFeatures);

/** Random Projection as described in
* @cite Kaski1998*/
Expand Down
4 changes: 2 additions & 2 deletions include/tapkee/methods.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -62,8 +62,8 @@ class DynamicImplementation : public ImplementationBase<RandomAccessIterator, Ke
tapkee_method_handle(HessianLocallyLinearEmbedding);
tapkee_method_handle(LaplacianEigenmaps);
tapkee_method_handle(LocalityPreservingProjections);
tapkee_method_handle(PCA);
tapkee_method_handle(KernelPCA);
tapkee_method_handle(PrincipalComponentAnalysis);
tapkee_method_handle(KernelPrincipalComponentAnalysis);
tapkee_method_handle(RandomProjection);
tapkee_method_handle(StochasticProximityEmbedding);
tapkee_method_handle(PassThru);
Expand Down
2 changes: 1 addition & 1 deletion include/tapkee/methods/kernel_pca.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ namespace tapkee
namespace tapkee_internal
{

__TAPKEE_IMPLEMENTATION(KernelPCA)
__TAPKEE_IMPLEMENTATION(KernelPrincipalComponentAnalysis)
TapkeeOutput embed()
{
DenseSymmetricMatrix centered_kernel_matrix = compute_centered_kernel_matrix(this->begin, this->end, this->kernel);
Expand Down
2 changes: 1 addition & 1 deletion include/tapkee/methods/pca.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ namespace tapkee
namespace tapkee_internal
{

__TAPKEE_IMPLEMENTATION(PCA)
__TAPKEE_IMPLEMENTATION(PrincipalComponentAnalysis)
TapkeeOutput embed()
{
DenseVector mean_vector = compute_mean(this->begin, this->end, this->features, this->current_dimension);
Expand Down
4 changes: 2 additions & 2 deletions src/cli/util.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -114,9 +114,9 @@ tapkee::DimensionReductionMethod parse_reduction_method(const char* str)
if (!strcmp(str, "diffusion_map") || !strcmp(str, "dm"))
return tapkee::DiffusionMap;
if (!strcmp(str, "kernel_pca") || !strcmp(str, "kpca"))
return tapkee::KernelPCA;
return tapkee::KernelPrincipalComponentAnalysis;
if (!strcmp(str, "pca"))
return tapkee::PCA;
return tapkee::PrincipalComponentAnalysis;
if (!strcmp(str, "random_projection") || !strcmp(str, "ra"))
return tapkee::RandomProjection;
if (!strcmp(str, "laplacian_eigenmaps") || !strcmp(str, "la"))
Expand Down
8 changes: 4 additions & 4 deletions test/unit/interface.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ TEST(Interface, ChainInterfaceOrder)
.embedRange(indices.begin(), indices.end()));

ASSERT_NO_THROW(output = tapkee::initialize()
.withParameters((method = KernelPCA))
.withParameters((method = KernelPrincipalComponentAnalysis))
.withDistance(dcb)
.withKernel(kcb)
.withFeatures(fcb)
Expand Down Expand Up @@ -75,13 +75,13 @@ TEST(Interface, ChainInterfaceOrder)
.embedRange(indices.begin(), indices.end()));

ASSERT_NO_THROW(output = tapkee::initialize()
.withParameters((method = KernelPCA))
.withParameters((method = KernelPrincipalComponentAnalysis))
.withKernel(kcb)
.withDistance(dcb)
.embedRange(indices.begin(), indices.end()));

ASSERT_NO_THROW(output = tapkee::initialize()
.withParameters((method = KernelPCA))
.withParameters((method = KernelPrincipalComponentAnalysis))
.withKernel(kcb)
.withFeatures(fcb)
.embedRange(indices.begin(), indices.end()));
Expand All @@ -99,7 +99,7 @@ TEST(Interface, ChainInterfaceOrder)
.embedRange(indices.begin(), indices.end()));

ASSERT_NO_THROW(output = tapkee::initialize()
.withParameters((method = KernelPCA))
.withParameters((method = KernelPrincipalComponentAnalysis))
.withKernel(kcb)
.embedRange(indices.begin(), indices.end()));

Expand Down
8 changes: 4 additions & 4 deletions test/unit/methods.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -96,14 +96,14 @@ TEST(Methods, StochasticProximityEmbeddingSmokeTest)
smoketest(StochasticProximityEmbedding);
}

TEST(Methods, KernelPCASmokeTest)
TEST(Methods, KernelPrincipalComponentAnalysisSmokeTest)
{
smoketest(KernelPCA);
smoketest(KernelPrincipalComponentAnalysis);
}

TEST(Methods, PCASmokeTest)
TEST(Methods, PrincipalComponentAnalysisSmokeTest)
{
smoketest(PCA);
smoketest(PrincipalComponentAnalysis);
}

TEST(Methods, RandomProjectionSmokeTest)
Expand Down
4 changes: 2 additions & 2 deletions test/unit/projecting.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6,14 +6,14 @@

using namespace tapkee;

TEST(Projecting, PCA)
TEST(Projecting, PrincipalComponentAnalysis)
{
const int N = 50;
DenseMatrix X = swissroll(N);

TapkeeOutput output;

ASSERT_NO_THROW(output = tapkee::initialize().withParameters((method = PCA, target_dimension = 2)).embedUsing(X));
ASSERT_NO_THROW(output = tapkee::initialize().withParameters((method = PrincipalComponentAnalysis, target_dimension = 2)).embedUsing(X));

auto projected = output.projection(X.col(0));
ASSERT_EQ(2, projected.size());
Expand Down
Loading