This repository corresponds to the official source code of the ICCV 2021 paper:
On Exposing the Challenging Long Tail in Future Prediction of Traffic Actors
We use the same requirements as the Trajectron++, see: https://github.com/StanfordASL/Trajectron-plus-plus
Additionally, it is essential to download the Trajectron++ code, rename it to Trajectron_plus_plus
and place it next to other folders (e.g., data/, models/
).
The test data files are provided under data/
.
These are the result of running the processing script of the Trajectron++, see:
https://github.com/StanfordASL/Trajectron-plus-plus/blob/master/experiments/pedestrians/process_data.py
For the processed files, you can run the processing script of nuScenes at: https://github.com/StanfordASL/Trajectron-plus-plus/blob/master/experiments/nuScenes/process_data.py
All pretrained models (EWTA and with contrastive learning) are provided under models/
.
This is an example call of the testing script (test Trajectron++EWTA on ETH):
python test.py --model models/eth_ewta/ --checkpoint 490 --data data/eth_test.pkl --kalman kalman/eth_PEDESTRIAN_test_kalman.pkl --node_type PEDESTRIAN
Another example to test all vehicles on nuScenes dataset:
python test.py --model models/nuScenes_ewta/ --checkpoint 25 --data data/nuScenes_test_full.pkl --kalman kalman/nuScenes_VEHICLE_test_kalman.pkl --node_type VEHICLE
Coming soon...
If you use our repository or find it useful in your research, please cite the following paper:
@InProceedings{MCMB21, author = "O. Makansi and {\"O}. {\c{C}}i{\c{c}}ek and Y. Marrakchi and T. Brox", title = "On Exposing the Challenging Long Tail in Future Prediction of Traffic Actors", booktitle = "IEEE International Conference on Computer Vision (ICCV)", month = " ", year = "2021", url = "http://lmb.informatik.uni-freiburg.de/Publications/2021/MCMB21" }