-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Crop by foreground and fix a bug with target classes csv_to_yolo #106
Open
RugvedMavidipalli
wants to merge
6
commits into
ais
Choose a base branch
from
crop_by_foreground
base: ais
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
3435c06
script to crop by foreground class
RugvedMavidipalli 7555896
fixing target class bug
RugvedMavidipalli 1c53070
updated;
RugvedMavidipalli 5b4e10a
support key points
nickjyj bef473c
updated augment hf and cbf
RugvedMavidipalli 6cb866d
fix an issue: flip should also flip class. Also, sort key points by c…
nickjyj File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
|
||
import numpy as np | ||
from label_utils.csv_utils import load_csv | ||
from label_utils.shapes import Mask, Rect, Keypoint, Brush | ||
from label_utils.csv_utils import write_to_csv | ||
import os | ||
import cv2 | ||
import collections | ||
import logging | ||
|
||
logging.basicConfig() | ||
logger = logging.getLogger(__name__) | ||
logger.setLevel(logging.INFO) | ||
|
||
|
||
def main(): | ||
import argparse | ||
ap = argparse.ArgumentParser() | ||
|
||
ap.add_argument('--path_imgs', '-i', required=True, help='the path of a image folder') | ||
ap.add_argument('--path_csv', default='labels.csv', help='[optinal] the path of a csv file that corresponds to path_imgs, default="labels.csv" in path_imgs') | ||
ap.add_argument('--path_out', '-o', required=True, help='the output path') | ||
ap.add_argument('--symc',required=True, help='the comma separated symetrical classes. Every two classes are symetrical to each other.') | ||
args = vars(ap.parse_args()) | ||
path_imgs = args['path_imgs'] | ||
symc = args['symc'].split(',') | ||
if len(symc) % 2 != 0: | ||
raise ValueError('symc should have even number of elements') | ||
symc_dict = {} | ||
for i in range(0, len(symc), 2): | ||
symc_dict[symc[i]] = symc[i+1] | ||
symc_dict[symc[i+1]] = symc[i] | ||
path_csv = args['path_csv'] if args['path_csv']!='labels.csv' else os.path.join(path_imgs, args['path_csv']) | ||
fname_to_shapes,class_to_id = load_csv(path_csv, path_imgs, zero_index=True) | ||
if not os.path.exists(args['path_out']): | ||
os.makedirs(args['path_out']) | ||
|
||
|
||
annots = fname_to_shapes.copy() | ||
for fname in fname_to_shapes: | ||
logger.info(f'processing {fname}') | ||
ext = os.path.basename(fname).split('.')[-1] | ||
updated_fname = os.path.basename(fname).replace(f'.{ext}', f'_augmented_hf.{ext}') | ||
img = cv2.imread(os.path.join(args['path_imgs'], fname)) | ||
height, width = img.shape[:2] | ||
flipped_image = img[:, ::-1].copy() | ||
logger.info(f'flipped image shape: {flipped_image.shape}') | ||
|
||
for shape in fname_to_shapes[fname]: | ||
new_symc = shape.category | ||
if shape.category in symc_dict: | ||
new_symc = symc_dict[shape.category] | ||
|
||
if isinstance(shape, Rect): | ||
x1,y1 = shape.up_left | ||
x2,y2 = shape.bottom_right | ||
bbox = [x1,y1,x2,y2] | ||
|
||
flipped_bbox = [width - x2, y1, width - x1, y2] | ||
annots[updated_fname].append(Rect( | ||
up_left=[flipped_bbox[0], flipped_bbox[1]], | ||
bottom_right=[flipped_bbox[2], flipped_bbox[3]], | ||
angle=shape.angle, | ||
confidence=shape.confidence, | ||
category=shape.category, | ||
im_name=updated_fname, | ||
fullpath=os.path.join(args['path_out'], updated_fname) | ||
)) | ||
elif isinstance(shape, Keypoint): | ||
|
||
# flip the keypoint | ||
x = shape.x | ||
y = shape.y | ||
|
||
flipped_x = width - x | ||
flipped_y = y | ||
annots[updated_fname].append(Keypoint( | ||
x=flipped_x, | ||
y=flipped_y, | ||
confidence=shape.confidence, | ||
category=new_symc, | ||
im_name=updated_fname, | ||
fullpath=os.path.join(args['path_out'], updated_fname) | ||
)) | ||
cv2.imwrite(os.path.join(args['path_out'], fname), img) | ||
cv2.imwrite(os.path.join(args['path_out'], updated_fname), flipped_image) | ||
|
||
# write the updated shapes to a csv file | ||
|
||
write_to_csv(annots, os.path.join(args['path_out'], 'labels.csv')) | ||
logger.info('done augmenting hf') | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
main() | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
|
||
import numpy as np | ||
from label_utils.csv_utils import load_csv | ||
from label_utils.shapes import Mask, Rect, Keypoint, Brush | ||
from label_utils.csv_utils import write_to_csv | ||
import os | ||
import cv2 | ||
import collections | ||
import logging | ||
|
||
logging.basicConfig() | ||
logger = logging.getLogger(__name__) | ||
logger.setLevel(logging.INFO) | ||
|
||
def crop_by_percent(image, crop_percent, crop_from = 'top'): | ||
height, width = image.shape[:2] | ||
x1, y1 = 0, 0 | ||
x2, y2 = width, height | ||
if crop_from == 'top': | ||
x1, y1 = 0, 0 | ||
x2, y2 = width, int(height * crop_percent) | ||
elif crop_from == 'bottom': | ||
x1, y1 = 0, int(height * (1 - crop_percent)) | ||
x2, y2 = width, height | ||
return x1, y1, x2, y2 | ||
|
||
def crop_kp(bbox, shape): | ||
x1,y1,x2,y2 = bbox | ||
w,h = x2-x1, y2-y1 | ||
x,y = shape.x, shape.y | ||
x -= x1 | ||
y -= y1 | ||
|
||
valid = True | ||
if x<0 or x>=w or y<0 or y>=h: | ||
valid = False | ||
logger.warning(f'in {shape.im_name}, keypoint {x:.4f},{y:.4f} is out of the foreground bbox: {x1:.4f},{y1:.4f},{x2:.4f},{y2:.4f}. skip') | ||
|
||
return x,y,valid | ||
|
||
|
||
def crop_bbox(bbox1, bbox2): | ||
crop_x1, crop_y1, crop_x2, crop_y2 = bbox1 | ||
target_x1, target_y1, target_x2, target_y2 = bbox2 | ||
adjusted_x1 = target_x1 - crop_x1 | ||
adjusted_y1 = target_y1 - crop_y1 | ||
adjusted_x2 = target_x2 - crop_x1 | ||
adjusted_y2 = target_y2 - crop_y1 | ||
return adjusted_x1, adjusted_y1, adjusted_x2, adjusted_y2 | ||
|
||
def crop_mask(bbox, mask=None, polygon_mask=None, bbox_format="xywh"): | ||
# Interpret the bounding box coordinates | ||
if bbox_format == "xywh": | ||
x, y, w, h = bbox | ||
xmin, ymin, xmax, ymax = x, y, x + w, y + h | ||
elif bbox_format == "xyxy": | ||
xmin, ymin, xmax, ymax = bbox | ||
w, h = xmax - xmin, ymax - ymin | ||
else: | ||
raise ValueError("bbox_format must be either 'xywh' or 'xyxy'") | ||
cropped_mask = None | ||
if mask is not None: | ||
cropped_mask = mask[ymin:ymax, xmin:xmax] | ||
|
||
# If a polygon mask is provided, adjust its coordinates relative to the crop. | ||
cropped_polygon = None | ||
if polygon_mask is not None: | ||
# Ensure the input is a numpy array of shape (N, 2) | ||
polygon_mask = np.asarray(polygon_mask) | ||
if polygon_mask.ndim != 2 or polygon_mask.shape[1] != 2: | ||
raise ValueError("polygon_mask must be a 2D array with shape (N_points, 2)") | ||
|
||
# Shift the polygon by the top-left corner of the bounding box. | ||
cropped_polygon = polygon_mask - np.array([xmin, ymin]) | ||
|
||
cropped_polygon[:, 0] = np.clip(cropped_polygon[:, 0], 0, w) | ||
cropped_polygon[:, 1] = np.clip(cropped_polygon[:, 1], 0, h) | ||
|
||
return cropped_mask, cropped_polygon | ||
|
||
|
||
def main(): | ||
import argparse | ||
ap = argparse.ArgumentParser() | ||
|
||
ap.add_argument('--path_imgs', '-i', required=True, help='the path of a image folder') | ||
ap.add_argument('--path_csv', default='labels.csv', help='[optinal] the path of a csv file that corresponds to path_imgs, default="labels.csv" in path_imgs') | ||
ap.add_argument('--path_out', '-o', required=True, help='the output path') | ||
ap.add_argument('--target_classes',required=True, help='the comma separated target classes to crop') | ||
ap.add_argument('--crop_by_percent', type=float, default=0.0, help='the percentage of the image to crop', required=False) | ||
ap.add_argument('--crop_from', default='top', help='the direction to crop the image', required=False) | ||
args = vars(ap.parse_args()) | ||
path_imgs = args['path_imgs'] | ||
path_csv = args['path_csv'] if args['path_csv']!='labels.csv' else os.path.join(path_imgs, args['path_csv']) | ||
target_classes = args['target_classes'].split(',') | ||
fname_to_shapes,class_to_id = load_csv(path_csv, path_imgs, zero_index=True) | ||
if not os.path.exists(args['path_out']): | ||
os.makedirs(args['path_out']) | ||
|
||
foreground_shapes = {} | ||
for fname in fname_to_shapes: | ||
if fname not in foreground_shapes: | ||
foreground_shapes[fname] = { | ||
'foreground': [] | ||
} | ||
for shape in fname_to_shapes[fname]: | ||
#get class ID | ||
if shape.category not in target_classes: | ||
continue | ||
|
||
|
||
if isinstance(shape, Rect): | ||
x0,y0 = shape.up_left | ||
x2,y2 = shape.bottom_right | ||
foreground_shapes[fname]['foreground'] = list(map(int, [x0,y0,x2,y2])) | ||
if len(foreground_shapes[fname]['foreground'])==0: | ||
logger.warning(f'no foreground found in {fname}') | ||
|
||
|
||
annots = collections.defaultdict(list) | ||
for fname in fname_to_shapes: | ||
|
||
ext = os.path.basename(fname).split('.')[-1] | ||
updated_fname = os.path.basename(fname).replace(f'.{ext}', f'_cropped.{ext}') | ||
if fname not in foreground_shapes: | ||
continue | ||
if len(foreground_shapes[fname]['foreground'])==0: | ||
continue | ||
logger.info(f'processing {fname}') | ||
|
||
image = cv2.imread(os.path.join(path_imgs, fname)) | ||
if image is None: | ||
logger.warning(f'failed to read {fname}, skip') | ||
continue | ||
|
||
if args['crop_by_percent']>0: | ||
x1,y1,x2,y2 = foreground_shapes[fname]['foreground'] | ||
sx,sy,ex,ey = crop_by_percent(image[y1:y2, x1:x2], args['crop_by_percent'], args['crop_from']) | ||
logger.info(f'cropping {fname} by {args["crop_by_percent"]*100:.2f}% from {args["crop_from"]}') | ||
|
||
|
||
|
||
H,W = image.shape[:2] | ||
for shape in fname_to_shapes[fname]: | ||
|
||
if shape.category in target_classes: | ||
continue | ||
|
||
|
||
if isinstance(shape, Rect): | ||
x1,y1 = shape.up_left | ||
x2,y2 = shape.bottom_right | ||
bbox = [x1,y1,x2,y2] | ||
cropped_bbox = crop_bbox(foreground_shapes[fname]['foreground'], bbox) | ||
if args['crop_by_percent']>0: | ||
cropped_bbox = crop_bbox([sx,sy,ex,ey], cropped_bbox) | ||
annots[updated_fname].append( | ||
Rect( | ||
up_left=[cropped_bbox[0], cropped_bbox[1]], | ||
bottom_right=[cropped_bbox[2], cropped_bbox[3]], | ||
angle=shape.angle, | ||
confidence=shape.confidence, | ||
category=shape.category, | ||
im_name=updated_fname, | ||
fullpath=os.path.join(args['path_out'], updated_fname) | ||
) | ||
) | ||
|
||
if isinstance(shape, Brush): | ||
mask = shape.to_mask((H,W)) | ||
mask = mask.astype(np.uint8)*255 | ||
# mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) | ||
cropped_mask, _ = crop_mask(foreground_shapes[fname]['foreground'], mask, bbox_format="xyxy") | ||
if args['crop_by_percent']>0: | ||
cropped_mask, _ = crop_mask([sx,sy,ex,ey], cropped_mask, bbox_format="xyxy") | ||
# add to brush labels | ||
annots[updated_fname].append( | ||
Brush( | ||
mask=cropped_mask>128, | ||
confidence=shape.confidence, | ||
category=shape.category, | ||
im_name=updated_fname, | ||
fullpath=os.path.join(args['path_out'], updated_fname) | ||
) | ||
) | ||
|
||
if isinstance(shape, Keypoint): | ||
x,y,is_valid = crop_kp(foreground_shapes[fname]['foreground'], shape) | ||
if not is_valid: | ||
continue | ||
if args['crop_by_percent']>0: | ||
x,y,is_valid = crop_kp([sx,sy,ex,ey], Keypoint(x=x, y=y, confidence=shape.confidence, category=shape.category, im_name=updated_fname, fullpath=os.path.join(args['path_out'], updated_fname))) | ||
if not is_valid: | ||
continue | ||
annots[updated_fname].append( | ||
Keypoint( | ||
x=x, | ||
y=y, | ||
confidence=shape.confidence, | ||
category=shape.category, | ||
im_name=updated_fname, | ||
fullpath=os.path.join(args['path_out'], updated_fname) | ||
) | ||
) | ||
|
||
# suporting polygon mask | ||
if isinstance(shape, Mask): | ||
polygon_x = shape.X | ||
polygon_y = shape.Y | ||
polygon_mask = np.stack([polygon_x, polygon_y], axis=1) | ||
_, cropped_polygon = crop_mask(foreground_shapes[fname]['foreground'], mask=None, polygon_mask=polygon_mask, bbox_format="xyxy") | ||
if args['crop_by_percent']>0: | ||
_, cropped_polygon = crop_mask([sx,sy,ex,ey], mask=None, polygon_mask=cropped_polygon, bbox_format="xyxy") | ||
# add to mask labels | ||
annots[updated_fname].append( | ||
Mask( | ||
x_vals=cropped_polygon[:, 0].tolist(), | ||
y_vals=cropped_polygon[:, 1].tolist(), | ||
confidence=shape.confidence, | ||
category=shape.category, | ||
im_name=updated_fname, | ||
fullpath=os.path.join(args['path_out'], updated_fname) | ||
) | ||
) | ||
|
||
# save the cropped image | ||
x1,y1,x2,y2 = foreground_shapes[fname]['foreground'] | ||
cropped_image = image[y1:y2, x1:x2] | ||
if args['crop_by_percent']>0: | ||
cropped_image = cropped_image[sy:ey, sx:ex] | ||
|
||
cv2.imwrite(os.path.join(args['path_out'], updated_fname), cropped_image) | ||
|
||
|
||
# save the updated shapes | ||
write_to_csv(annots, os.path.join(args['path_out'], 'labels.csv')) | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
main() | ||
|
||
|
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This looks good. Could you also make it to support polygons? Or we can do it through another PR
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
supported it now