-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #40 from Santymax98/PlackettCopula
- Loading branch information
Showing
3 changed files
with
140 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
#= Details about Plackett copulation are found in Joe, H. (2014). | ||
Dependence modeling with copulas. CRC press, Page.164 | ||
==# | ||
|
||
#Create an instance of the Plackett copula | ||
struct PlackettCopula{P} <: Copula{2} # since it is only bivariate. | ||
θ::P # Copula parameter | ||
|
||
function PlackettCopula(θ) | ||
if θ == 1 | ||
return IndependentCopula(2) | ||
elseif θ == 0 | ||
return MCopula(2) | ||
elseif θ == Inf | ||
return WCopula(2) | ||
else | ||
θ >= 0 || throw(ArgumentError("Theta must be non-negative")) | ||
return new{typeof(θ)}(θ) | ||
end | ||
end | ||
end | ||
|
||
# Base.length(S::PlackettCopula{P}) where {P} = 2 # length should return the dimension of the copula, bnut i think it is already working without this definition. | ||
Base.eltype(S::PlackettCopula{P}) where {P} = P # this shuold be P. | ||
|
||
# CDF calculation for bivariate Plackett Copula | ||
function Distributions.cdf(S::PlackettCopula{P}, uv) where {P} | ||
u, v = uv | ||
η = S.θ - 1 | ||
term1 = 1 + η * (u + v) | ||
term2 = sqrt(term1^2 - 4 * S.θ * η * u * v) | ||
return 0.5 * η^(-1) * (term1 - term2) | ||
end | ||
|
||
# PDF calculation for bivariate Plackett Copula | ||
function Distributions._logpdf(S::PlackettCopula{P}, uv) where {P} | ||
u, v = uv | ||
η = S.θ - 1 | ||
term1 = S.θ * (1 + η * (u + v - 2 * u * v)) | ||
term2 = (1+η*(u+v))^2-4*(S.θ)*η*u*v | ||
return log(term1) - 3 * log(term2)/2 # since we are supposed to return the logpdf. | ||
end | ||
import Random | ||
|
||
#= Details about the algorithm to generate copula samples | ||
can be seen in the following references | ||
Johnson, Mark E. Multivariate statistical simulation: | ||
A guide to selecting and generating continuous multivariate distributions. | ||
Vol. 192. John Wiley & Sons, 1987. Page 193. | ||
Nelsen, Roger B. An introduction to copulas. Springer, 2006. Exercise 3.38. | ||
==# | ||
|
||
function Distributions._rand!(rng::Distributions.AbstractRNG, C::CT, x::AbstractVector{T}) where {T<:Real, CT<:PlackettCopula} | ||
u = rand(rng) | ||
t = rand(rng) | ||
a = t * (1 - t) | ||
b = C.θ + a * (C.θ - 1)^2 | ||
cc = 2a * (u * C.θ^2 + 1 - u) + C.θ * (1 - 2a) | ||
d = sqrt(C.θ) * sqrt(C.θ + 4a * u * (1 - u) * (1 - C.θ)^2) | ||
v = (cc - (1 - 2t) * d) / (2b) | ||
x[1] = u | ||
x[2] = v | ||
return x | ||
end | ||
|
||
# Calculate Spearman's rho based on the PlackettCopula parameters | ||
function ρ(c::PlackettCopula{P}) where P | ||
return (c.θ+1)/(c.θ-1)-(2*c.θ*log(c.θ)/(c.θ-1)^2) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
@testitem "PlackettCopula Constructor" begin | ||
@test isa(PlackettCopula(1), IndependentCopula) | ||
@test isa(PlackettCopula(Inf),WCopula) # should work in any dimenisons if theta is smaller than the bound. | ||
@test isa(PlackettCopula(0),MCopula) | ||
@test_throws ArgumentError PlackettCopula(-0.5) | ||
end | ||
|
||
@testitem "PlackettCopula CDF" begin | ||
using Distributions | ||
u = 0.1:0.18:1 | ||
v = 0.4:0.1:0.9 | ||
l1 = [ | ||
0.055377800527509735, | ||
0.1743883734874062, | ||
0.3166277269195278, | ||
0.48232275012183223, | ||
0.6743113969874872, | ||
0.8999999999999999 | ||
] | ||
l2 = [ | ||
0.026208734813001233, | ||
0.10561162651259381, | ||
0.23491134194308438, | ||
0.4162573282722253, | ||
0.6419254774317229, | ||
0.9 | ||
] | ||
|
||
for i in 1:6 | ||
@test cdf(PlackettCopula(2.0), [u[i], v[i]]) ≈ l1[i] | ||
@test cdf(PlackettCopula(0.5), [u[i], v[i]]) ≈ l2[i] | ||
end | ||
end | ||
|
||
@testitem "PlackettCopula PDF" begin | ||
using Distributions | ||
u = 0.1:0.18:1 | ||
v = 0.4:0.1:0.9 | ||
l1 = [ | ||
1.0592107420343486, | ||
1.023290881054283, | ||
1.038466936984394, | ||
1.1100773231007635, | ||
1.2729591789643138, | ||
1.652892561983471 | ||
] | ||
l2 = [ | ||
0.8446203068160272, | ||
1.023290881054283, | ||
1.0648914416282562, | ||
0.9360170818943749, | ||
0.7346611825055718, | ||
0.5540166204986149 | ||
] | ||
|
||
for i in 1:6 | ||
@test pdf(PlackettCopula(2.0), [u[i], v[i]]) ≈ l1[i] | ||
@test pdf(PlackettCopula(0.5), [u[i], v[i]]) ≈ l2[i] | ||
end | ||
end | ||
|
||
@testitem "PlackettCopula Sampling" begin | ||
using Random | ||
n_samples = 100 | ||
C = PlackettCopula(0.8) | ||
samples = rand(C, n_samples) | ||
@test size(samples) == (2, n_samples) | ||
end |