Skip to content

Commit

Permalink
Merge pull request #58 from lsst-ts/add_convolve_template_centroiding
Browse files Browse the repository at this point in the history
Adding new centroid finding algorithm: CentroidConvolveTemplate.
  • Loading branch information
jbkalmbach authored Jan 27, 2021
2 parents 2f7835d + a69d4f0 commit 01e1dd9
Show file tree
Hide file tree
Showing 10 changed files with 433 additions and 5 deletions.
1 change: 1 addition & 0 deletions doc/content.rst
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,7 @@ This module calculates the wavefront error by solving the TIE.
* **CentroidDefault**: Default centroid class.
* **CentroidRandomWalk**: CentroidDefault child class to get the centroid of donut by the random walk model.
* **CentroidOtsu**: CentroidDefault child class to get the centroid of donut by the Otsu's method.
* **CentroidConvolveTemplate**: CentroidDefault child class to get the centroids of one or more donuts in an image by convolution with a template donut.
* **BaseCwfsTestCase**: Base class for CWFS tests.

.. _lsst.ts.wep-modules_wep_deblend:
Expand Down
3 changes: 3 additions & 0 deletions doc/uml/cwfsClass.uml
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,11 @@ Algorithm -- CompensableImage
CompensableImage ..> Instrument
CentroidDefault <|-- CentroidRandomWalk
CentroidDefault <|-- CentroidOtsu
CentroidDefault <|-- CentroidConvolveTemplate
CentroidFindFactory ..> CentroidRandomWalk
CentroidFindFactory ..> CentroidOtsu
CentroidFindFactory ..> CentroidConvolveTemplate
CentroidConvolveTemplate *-- CentroidRandomWalk
Image ..> CentroidFindFactory
Image *-- CentroidDefault
BaseCwfsTestCase ..> CompensableImage
Expand Down
8 changes: 8 additions & 0 deletions doc/versionHistory.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,14 @@
Version History
##################

.. _lsst.ts.wep-1.5.0:

-------------
1.5.0
-------------

* Add ``CentroidConvolveTemplate`` as a new centroid finding method.

.. _lsst.ts.wep-1.4.9:

-------------
Expand Down
2 changes: 1 addition & 1 deletion policy/default.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ defocalDistInMm: 1.5
# Donut image size in pixel (default value at 1.5 mm)
donutImgSizeInPixel: 160

# Centroid find algorithm. It can be "randomWalk" or "otsu"
# Centroid find algorithm. It can be "randomWalk", "otsu", or "convolveTemplate"
centroidFindAlgo: randomWalk

# Camera mapper for the data butler to use
Expand Down
5 changes: 4 additions & 1 deletion python/lsst/ts/wep/Utility.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ class ImageType(IntEnum):
class CentroidFindType(IntEnum):
RandomWalk = 1
Otsu = auto()
ConvolveTemplate = auto()


class DeblendDonutType(IntEnum):
Expand Down Expand Up @@ -359,7 +360,7 @@ def getCentroidFindType(centroidFindType):
Parameters
----------
centroidFindType : str
Centroid find algorithm to use (randomWalk or otsu).
Centroid find algorithm to use (randomWalk, otsu, or convolveTemplate).
Returns
-------
Expand All @@ -376,6 +377,8 @@ def getCentroidFindType(centroidFindType):
return CentroidFindType.RandomWalk
elif centroidFindType == "otsu":
return CentroidFindType.Otsu
elif centroidFindType == "convolveTemplate":
return CentroidFindType.ConvolveTemplate
else:
raise ValueError("The %s is not supported." % centroidFindType)

Expand Down
206 changes: 206 additions & 0 deletions python/lsst/ts/wep/cwfs/CentroidConvolveTemplate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
# This file is part of ts_wep.
#
# Developed for the LSST Telescope and Site Systems.
# This product includes software developed by the LSST Project
# (https://www.lsst.org).
# See the COPYRIGHT file at the top-level directory of this distribution
# for details of code ownership.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.

import numpy as np
from copy import copy
from lsst.ts.wep.cwfs.CentroidDefault import CentroidDefault
from lsst.ts.wep.cwfs.CentroidRandomWalk import CentroidRandomWalk
from scipy.signal import correlate
from sklearn.cluster import KMeans


class CentroidConvolveTemplate(CentroidDefault):
def __init__(self):
"""CentroidDefault child class to get the centroid of donut by
convolution with a template donut image."""

super(CentroidConvolveTemplate, self).__init__()
self._centRandomWalk = CentroidRandomWalk()

def getImgBinary(self, imgDonut):
"""Get the binary image.
Parameters
----------
imgDonut : numpy.ndarray
Donut image to do the analysis.
Returns
-------
numpy.ndarray [int]
Binary image of donut.
"""

return self._centRandomWalk.getImgBinary(imgDonut)

def getCenterAndR(self, imgDonut, templateDonut=None, peakThreshold=0.95):
"""Get the centroid data and effective weighting radius.
Parameters
----------
imgDonut : numpy.ndarray
Donut image.
templateDonut : None or numpy.ndarray, optional
Template image for a single donut. If set to None
then the image will be convolved with itself. (The Default is None)
peakThreshold : float, optional
This value is a specifies a number between 0 and 1 that is
the fraction of the highest pixel value in the convolved image.
The code then sets all pixels with a value below this to 0 before
running the K-means algorithm to find peaks that represent possible
donut locations. (The default is 0.95)
Returns
-------
float
Centroid x.
float
Centroid y.
float
Effective weighting radius.
"""

imgBinary = self.getImgBinary(imgDonut)

if templateDonut is None:
templateBinary = copy(imgBinary)
else:
templateBinary = self.getImgBinary(templateDonut)

return self.getCenterAndRfromImgBinary(
imgBinary, templateBinary=templateBinary, peakThreshold=peakThreshold,
)

def getCenterAndRfromImgBinary(
self, imgBinary, templateBinary=None, peakThreshold=0.95
):
"""Get the centroid data and effective weighting radius.
Parameters
----------
imgBinary : numpy.ndarray
Binary image of donut.
templateBinary : None or numpy.ndarray, optional
Binary image of template for a single donut. If set to None
then the image will be convolved with itself. (The Default is None)
peakThreshold : float, optional
This value is a specifies a number between 0 and 1 that is
the fraction of the highest pixel value in the convolved image.
The code then sets all pixels with a value below this to 0 before
running the K-means algorithm to find peaks that represent possible
donut locations. (The default is 0.95)
Returns
-------
float
Centroid x.
float
Centroid y.
float
Effective weighting radius.
"""

x, y, radius = self.getCenterAndRfromTemplateConv(
imgBinary,
templateImgBinary=templateBinary,
nDonuts=1,
peakThreshold=peakThreshold,
)

return x[0], y[0], radius

def getCenterAndRfromTemplateConv(
self, imageBinary, templateImgBinary=None, nDonuts=1, peakThreshold=0.95
):
"""
Get the centers of the donuts by convolving a binary template image
with the binary image of the donut or donuts.
Peaks will appear as bright spots in the convolved image. Since we
use binary images the brightness of the stars does not matter and
the peaks of any stars in the image should have about the same
brightness if the template is correct.
Parameters
----------
imageBinary: numpy.ndarray
Binary image of postage stamp.
templateImgBinary: None or numpy.ndarray, optional
Binary image of template donut. If set to None then the image
is convolved with itself. (The default is None)
nDonuts: int, optional
Number of donuts there should be in the binary image. Needs to
be >= 1. (The default is 1)
peakThreshold: float, optional
This value is a specifies a number between 0 and 1 that is
the fraction of the highest pixel value in the convolved image.
The code then sets all pixels with a value below this to 0 before
running the K-means algorithm to find peaks that represent possible
donut locations. (The default is 0.95)
Returns
-------
list
X pixel coordinates for donut centroid.
list
Y pixel coordinates for donut centroid.
float
Effective weighting radius calculated using the template image.
"""

if templateImgBinary is None:
templateImgBinary = copy(imageBinary)

nDonutsAssertStr = "nDonuts must be an integer >= 1"
assert (nDonuts >= 1) & (type(nDonuts) is int), nDonutsAssertStr

# We set the mode to be "same" because we need to return the same
# size image to the code.
tempConvolve = correlate(imageBinary, templateImgBinary, mode="same")

# Then we rank the pixel values keeping only those above
# some fraction of the highest value.
rankedConvolve = np.argsort(tempConvolve.flatten())[::-1]
cutoff = len(
np.where(tempConvolve.flatten() > peakThreshold * np.max(tempConvolve))[0]
)
rankedConvolveCutoff = rankedConvolve[:cutoff]
nx, ny = np.unravel_index(rankedConvolveCutoff, np.shape(imageBinary))

# Then to find peaks in the image we use K-Means with the
# specified number of donuts
kmeans = KMeans(n_clusters=nDonuts)
labels = kmeans.fit_predict(np.array([nx, ny]).T)

# Then in each cluster we take the brightest pixel as the centroid
centX = []
centY = []
for labelNum in range(nDonuts):
nxLabel, nyLabel = np.unravel_index(
rankedConvolveCutoff[labels == labelNum][0], np.shape(imageBinary)
)
centX.append(nxLabel)
centY.append(nyLabel)

# Get the radius of the donut from the template image
radius = np.sqrt(np.sum(templateImgBinary) / np.pi)

return centX, centY, radius
8 changes: 6 additions & 2 deletions python/lsst/ts/wep/cwfs/CentroidDefault.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,13 +26,15 @@
class CentroidDefault(object):
"""Default Centroid class."""

def getCenterAndR(self, imgDonut):
def getCenterAndR(self, imgDonut, **kwargs):
"""Get the centroid data and effective weighting radius.
Parameters
----------
imgDonut : numpy.ndarray
Donut image.
**kwargs : dict[str, any]
Dictionary of input argument: new value for that input argument.
Returns
-------
Expand All @@ -48,14 +50,16 @@ def getCenterAndR(self, imgDonut):

return self.getCenterAndRfromImgBinary(imgBinary)

def getCenterAndRfromImgBinary(self, imgBinary):
def getCenterAndRfromImgBinary(self, imgBinary, **kwargs):
"""Get the centroid data and effective weighting radius from the binary
image.
Parameters
----------
imgBinary : numpy.ndarray [int]
Binary image of donut.
**kwargs : dict[str, any]
Dictionary of input argument: new value for that input argument.
Returns
-------
Expand Down
5 changes: 4 additions & 1 deletion python/lsst/ts/wep/cwfs/CentroidFindFactory.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
from lsst.ts.wep.Utility import CentroidFindType
from lsst.ts.wep.cwfs.CentroidRandomWalk import CentroidRandomWalk
from lsst.ts.wep.cwfs.CentroidOtsu import CentroidOtsu
from lsst.ts.wep.cwfs.CentroidConvolveTemplate import CentroidConvolveTemplate


class CentroidFindFactory(object):
Expand All @@ -39,7 +40,7 @@ def createCentroidFind(centroidFindType):
Returns
-------
CentroidRandomWalk, CentroidOtsu
Child class of centroidDefault
Centroid find object.
Raises
Expand All @@ -52,5 +53,7 @@ def createCentroidFind(centroidFindType):
return CentroidRandomWalk()
elif centroidFindType == CentroidFindType.Otsu:
return CentroidOtsu()
elif centroidFindType == CentroidFindType.ConvolveTemplate:
return CentroidConvolveTemplate()
else:
raise ValueError("The %s is not supported." % centroidFindType)
Loading

0 comments on commit 01e1dd9

Please sign in to comment.