Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tickets/DM-47164: Update to new ISR task #278

Draft
wants to merge 2 commits into
base: develop
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions doc/versionHistory.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,14 @@
Version History
##################

.. _lsst.ts.wep-12.4.0:

-------------
12.4.0
-------------

* Updated to use new ISR task (lsst.ip.isr.IsrTask --> lsst.ip.isr.IsrTaskLSST)

.. _lsst.ts.wep-12.3.0:

-------------
Expand Down
28 changes: 10 additions & 18 deletions pipelines/directDetect/cwfsDirectDetectPipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,27 +8,19 @@ instrument: lsst.obs.lsst.LsstCam
# and then specify the class name corresponding to that task
tasks:
isr:
class: lsst.ip.isr.isrTask.IsrTask
# Below we specify the configuration settings we want to use
# when running the task in this pipeline. Since our data doesn't
# include bias or flats we only want to use doApplyGains and
# doOverscan in our isr task.
class: lsst.ip.isr.IsrTaskLSST
config:
connections.outputExposure: "postISRCCD"
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
doAmpOffset: true
ampOffset.doApplyAmpOffset: false
# Turn off slow steps in ISR
doBrighterFatter: false
doCrosstalk: false
# Turn off flats, biases, darks because we don't have these in test repo
doBias: False
doVariance: False
doLinearize: False
doCrosstalk: False
doDefect: False
doNanMasking: False
doInterpolate: False
doBrighterFatter: False
doDark: False
doFlat: False
doApplyGains: True
doFringe: False
doOverscan: True
python: OverscanCorrectionTask.ConfigClass.fitType = 'MEDIAN'
generateDonutDirectDetectTask:
class: lsst.ts.wep.task.generateDonutDirectDetectTask.GenerateDonutDirectDetectTask
config:
Expand All @@ -40,4 +32,4 @@ tasks:
config:
estimateZernikes.maxNollIndex: 28
estimateZernikes.saveHistory: False
estimateZernikes.maskKwargs: {'doMaskBlends': False}
estimateZernikes.maskKwargs: { "doMaskBlends": False }
28 changes: 10 additions & 18 deletions pipelines/directDetect/scienceDirectDetectPipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,27 +8,19 @@ instrument: lsst.obs.lsst.LsstCam
# and then specify the class name corresponding to that task
tasks:
isr:
class: lsst.ip.isr.isrTask.IsrTask
# Below we specify the configuration settings we want to use
# when running the task in this pipeline. Since our data doesn't
# include bias or flats we only want to use doApplyGains and
# doOverscan in our isr task.
class: lsst.ip.isr.IsrTaskLSST
config:
connections.outputExposure: "postISRCCD"
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
doAmpOffset: true
ampOffset.doApplyAmpOffset: false
# Turn off slow steps in ISR
doBrighterFatter: false
doCrosstalk: false
# Turn off flats, biases, darks because we don't have these in test repo
doBias: False
doVariance: False
doLinearize: False
doCrosstalk: False
doDefect: False
doNanMasking: False
doInterpolate: False
doBrighterFatter: False
doDark: False
doFlat: False
doApplyGains: True
doFringe: False
doOverscan: True
python: OverscanCorrectionTask.ConfigClass.fitType = 'MEDIAN'
generateDonutDirectDetectTask:
class: lsst.ts.wep.task.generateDonutDirectDetectTask.GenerateDonutDirectDetectTask
config:
Expand All @@ -40,4 +32,4 @@ tasks:
config:
estimateZernikes.maxNollIndex: 28
estimateZernikes.saveHistory: False
estimateZernikes.maskKwargs: {'doMaskBlends': False}
estimateZernikes.maskKwargs: { "doMaskBlends": False }
4 changes: 2 additions & 2 deletions pipelines/production/comCamRapidAnalysisPipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -19,9 +19,9 @@ tasks:
config:
estimateZernikes.maxNollIndex: 28
estimateZernikes.saveHistory: False
estimateZernikes.maskKwargs: {'doMaskBlends': False}
estimateZernikes.maskKwargs: { "doMaskBlends": False }
isr:
class: lsst.ip.isr.IsrTask
class: lsst.ip.isr.IsrTaskLSST
config:
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
Expand Down
4 changes: 2 additions & 2 deletions pipelines/production/comCamSimRapidAnalysisPipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -19,9 +19,9 @@ tasks:
config:
estimateZernikes.maxNollIndex: 28
estimateZernikes.saveHistory: False
estimateZernikes.maskKwargs: {'doMaskBlends': False}
estimateZernikes.maskKwargs: { "doMaskBlends": False }
isr:
class: lsst.ip.isr.IsrTask
class: lsst.ip.isr.IsrTaskLSST
config:
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
Expand Down
26 changes: 9 additions & 17 deletions tests/testData/pipelineConfigs/testBasePipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,26 +8,18 @@ instrument: lsst.obs.lsst.LsstCam
# and then specify the class name corresponding to that task
tasks:
isr:
class: lsst.ip.isr.isrTask.IsrTask
# Below we specify the configuration settings we want to use
# when running the task in this pipeline. Since our data doesn't
# include bias or flats we only want to use doApplyGains and
# doOverscan in our isr task.
class: lsst.ip.isr.IsrTaskLSST
config:
connections.outputExposure: 'postISRCCD'
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
doAmpOffset: true
ampOffset.doApplyAmpOffset: false
# Turn off slow steps in ISR
doBrighterFatter: false
doCrosstalk: false
# Turn off flats, biases, darks because we don't have these in test repo
doBias: False
doVariance: False
doLinearize: False
doCrosstalk: False
doDefect: False
doNanMasking: False
doInterpolate: False
doBrighterFatter: False
doDark: False
doFlat: False
doApplyGains: True
doFringe: False
doOverscan: True
python: OverscanCorrectionTask.ConfigClass.fitType = 'MEDIAN'
generateDonutCatalogWcsTask:
class: lsst.ts.wep.task.generateDonutCatalogWcsTask.GenerateDonutCatalogWcsTask
Original file line number Diff line number Diff line change
Expand Up @@ -8,27 +8,19 @@ instrument: lsst.obs.lsst.LsstCam
# and then specify the class name corresponding to that task
tasks:
isr:
class: lsst.ip.isr.isrTask.IsrTask
# Below we specify the configuration settings we want to use
# when running the task in this pipeline. Since our data doesn't
# include bias or flats we only want to use doApplyGains and
# doOverscan in our isr task.
class: lsst.ip.isr.IsrTaskLSST
config:
connections.outputExposure: "postISRCCD"
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
doAmpOffset: true
ampOffset.doApplyAmpOffset: false
# Turn off slow steps in ISR
doBrighterFatter: false
doCrosstalk: false
# Turn off flats, biases, darks because we don't have these in test repo
doBias: False
doVariance: False
doLinearize: False
doCrosstalk: False
doDefect: False
doNanMasking: False
doInterpolate: False
doBrighterFatter: False
doDark: False
doFlat: False
doApplyGains: True
doFringe: False
doOverscan: True
python: OverscanCorrectionTask.ConfigClass.fitType = 'MEDIAN'
generateDonutCatalogWcsTask:
class: lsst.ts.wep.task.generateDonutCatalogWcsTask.GenerateDonutCatalogWcsTask
config:
Expand Down
26 changes: 9 additions & 17 deletions tests/testData/pipelineConfigs/testCalcZernikesLatissPipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,27 +4,19 @@ description: wep basic processing test pipeline
instrument: lsst.obs.lsst.Latiss
tasks:
isr:
class: lsst.ip.isr.isrTask.IsrTask
# Below we specify the configuration settings we want to use
# when running the task in this pipeline. Since our data doesn't
# include bias or flats we only want to use doApplyGains and
# doOverscan in our isr task.
class: lsst.ip.isr.IsrTaskLSST
config:
connections.outputExposure: "postISRCCD"
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
doAmpOffset: true
ampOffset.doApplyAmpOffset: false
# Turn off slow steps in ISR
doBrighterFatter: false
doCrosstalk: false
# Turn off flats, biases, darks because we don't have these in test repo
doBias: False
doVariance: False
doLinearize: False
doCrosstalk: False
doDefect: False
doNanMasking: False
doInterpolate: False
doBrighterFatter: False
doDark: False
doFlat: False
doApplyGains: True
doFringe: False
doOverscan: True
python: OverscanCorrectionTask.ConfigClass.fitType = 'MEDIAN_PER_ROW'
generateDonutDirectDetectTask:
class: lsst.ts.wep.task.generateDonutDirectDetectTask.GenerateDonutDirectDetectTask
config:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,27 +8,19 @@ instrument: lsst.obs.lsst.LsstCam
# and then specify the class name corresponding to that task
tasks:
isr:
class: lsst.ip.isr.isrTask.IsrTask
# Below we specify the configuration settings we want to use
# when running the task in this pipeline. Since our data doesn't
# include bias or flats we only want to use doApplyGains and
# doOverscan in our isr task.
class: lsst.ip.isr.IsrTaskLSST
config:
connections.outputExposure: "postISRCCD"
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
doAmpOffset: true
ampOffset.doApplyAmpOffset: false
# Turn off slow steps in ISR
doBrighterFatter: false
doCrosstalk: false
# Turn off flats, biases, darks because we don't have these in test repo
doBias: False
doVariance: False
doLinearize: False
doCrosstalk: False
doDefect: False
doNanMasking: False
doInterpolate: False
doBrighterFatter: False
doDark: False
doFlat: False
doApplyGains: True
doFringe: False
doOverscan: True
python: OverscanCorrectionTask.ConfigClass.fitType = 'MEDIAN'
generateDonutCatalogWcsTask:
class: lsst.ts.wep.task.generateDonutCatalogWcsTask.GenerateDonutCatalogWcsTask
config:
Expand Down
26 changes: 9 additions & 17 deletions tests/testData/pipelineConfigs/testCutoutsCwfsPipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,27 +8,19 @@ instrument: lsst.obs.lsst.LsstCam
# and then specify the class name corresponding to that task
tasks:
isr:
class: lsst.ip.isr.isrTask.IsrTask
# Below we specify the configuration settings we want to use
# when running the task in this pipeline. Since our data doesn't
# include bias or flats we only want to use doApplyGains and
# doOverscan in our isr task.
class: lsst.ip.isr.IsrTaskLSST
config:
connections.outputExposure: "postISRCCD"
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
doAmpOffset: true
ampOffset.doApplyAmpOffset: false
# Turn off slow steps in ISR
doBrighterFatter: false
doCrosstalk: false
# Turn off flats, biases, darks because we don't have these in test repo
doBias: False
doVariance: True
doLinearize: False
doCrosstalk: False
doDefect: False
doNanMasking: False
doInterpolate: False
doBrighterFatter: False
doDark: False
doFlat: False
doApplyGains: True
doFringe: False
doOverscan: True
python: OverscanCorrectionTask.ConfigClass.fitType = 'MEDIAN'
generateDonutCatalogWcsTask:
class: lsst.ts.wep.task.generateDonutCatalogWcsTask.GenerateDonutCatalogWcsTask
config:
Expand Down
26 changes: 9 additions & 17 deletions tests/testData/pipelineConfigs/testCutoutsFamPipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,27 +8,19 @@ instrument: lsst.obs.lsst.LsstCam
# and then specify the class name corresponding to that task
tasks:
isr:
class: lsst.ip.isr.isrTask.IsrTask
# Below we specify the configuration settings we want to use
# when running the task in this pipeline. Since our data doesn't
# include bias or flats we only want to use doApplyGains and
# doOverscan in our isr task.
class: lsst.ip.isr.IsrTaskLSST
config:
connections.outputExposure: "postISRCCD"
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
doAmpOffset: true
ampOffset.doApplyAmpOffset: false
# Turn off slow steps in ISR
doBrighterFatter: false
doCrosstalk: false
# Turn off flats, biases, darks because we don't have these in test repo
doBias: False
doVariance: True
doLinearize: False
doCrosstalk: False
doDefect: False
doNanMasking: False
doInterpolate: False
doBrighterFatter: False
doDark: False
doFlat: False
doApplyGains: True
doFringe: False
doOverscan: True
python: OverscanCorrectionTask.ConfigClass.fitType = 'MEDIAN'
generateDonutCatalogWcsTask:
class: lsst.ts.wep.task.generateDonutCatalogWcsTask.GenerateDonutCatalogWcsTask
config:
Expand Down
26 changes: 9 additions & 17 deletions tests/testData/pipelineConfigs/testCutoutsLatissPipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,27 +8,19 @@ instrument: lsst.obs.lsst.Latiss
# and then specify the class name corresponding to that task
tasks:
isr:
class: lsst.ip.isr.isrTask.IsrTask
# Below we specify the configuration settings we want to use
# when running the task in this pipeline. Since our data doesn't
# include bias or flats we only want to use doApplyGains and
# doOverscan in our isr task.
class: lsst.ip.isr.IsrTaskLSST
config:
connections.outputExposure: "postISRCCD"
# Although we don't have to apply the amp offset corrections, we do want
# to compute them for analyzeAmpOffsetMetadata to report on as metrics.
doAmpOffset: true
ampOffset.doApplyAmpOffset: false
# Turn off slow steps in ISR
doBrighterFatter: false
doCrosstalk: false
# Turn off flats, biases, darks because we don't have these in test repo
doBias: False
doVariance: True
doLinearize: False
doCrosstalk: False
doDefect: False
doNanMasking: False
doInterpolate: False
doBrighterFatter: False
doDark: False
doFlat: False
doApplyGains: True
doFringe: False
doOverscan: True
python: OverscanCorrectionTask.ConfigClass.fitType = 'MEDIAN_PER_ROW'
generateDonutDirectDetectTask:
class: lsst.ts.wep.task.generateDonutDirectDetectTask.GenerateDonutDirectDetectTask
cutOutDonutsScienceSensorTask:
Expand Down
Loading
Loading