-
Notifications
You must be signed in to change notification settings - Fork 778
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
91 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
"""Supported backend: tensorflow.compat.v1, tensorflow""" | ||
import os | ||
|
||
os.environ["DDEBACKEND"] = "tensorflow" | ||
|
||
import deepxde as dde | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import tensorflow as tf | ||
|
||
# Load dataset | ||
d = np.load("../examples/operator/antiderivative_aligned_train.npz", allow_pickle=True) | ||
X_train = (d["X"][0].astype(np.float32), d["X"][1].astype(np.float32)) | ||
y_train = d["y"].astype(np.float32) | ||
d = np.load("../examples/operator/antiderivative_aligned_test.npz", allow_pickle=True) | ||
X_test = (d["X"][0].astype(np.float32), d["X"][1].astype(np.float32)) | ||
y_test = d["y"].astype(np.float32) | ||
|
||
data = dde.data.TripleCartesianProd( | ||
X_train=X_train, y_train=y_train, X_test=X_test, y_test=y_test | ||
) | ||
|
||
""" | ||
Loss function from: | ||
DeepONet-Grid-UQ: A Trustworthy Deep Operator Framework | ||
for Predicting the Power Grid’s Post-Fault Trajectories. | ||
Christian Moya, Shiqi Zhang, Meng Yue, and Guang Lin | ||
""" | ||
|
||
|
||
def log_likelihood(y_true, model_output): | ||
# y_pred = model_output[0] | ||
sigma_pred = model_output[:, :, 1] | ||
|
||
value = tf.math.reduce_mean( | ||
tf.math.log(2 * np.pi * tf.math.square(sigma_pred)) | ||
) | ||
|
||
return value | ||
|
||
|
||
def my_MSE(y_true, model_output): | ||
y_pred = model_output[:, :, 0] | ||
sigma_pred = model_output[:, :, 1] | ||
|
||
value = tf.math.reduce_mean( | ||
tf.math.square(y_pred - y_true) / (tf.math.square(sigma_pred)) | ||
) | ||
|
||
return value | ||
|
||
|
||
def L2metric(y_true, y_pred): | ||
return dde.metrics.mean_l2_relative_error(y_test, y_pred[:, :, 0]) | ||
|
||
|
||
# Choose a network | ||
m = 100 | ||
dim_x = 1 | ||
net = dde.nn.DeepONetCartesianProd( | ||
[m, 40, 40], | ||
[dim_x, 40, 40], | ||
"relu", | ||
"Glorot normal", | ||
num_outputs=2, | ||
multi_output_strategy="independent", | ||
) | ||
|
||
|
||
def output_transform(inputs, outputs): | ||
y_pred = outputs[:, :, 0] | ||
sigma_pred = tf.math.exp(outputs[:, :, 1]) | ||
return tf.stack([y_pred, sigma_pred], 2) | ||
|
||
|
||
net.apply_output_transform(output_transform) | ||
|
||
# Define a Model | ||
model = dde.Model(data, net) | ||
|
||
# Compile and Train | ||
|
||
model.compile( | ||
"adam", lr=0.001, loss=[my_MSE, log_likelihood], metrics=[L2metric] | ||
) | ||
losshistory, train_state = model.train(iterations=10000) | ||
print(model.predict(X_test).shape) | ||
|
||
# Plot the loss trajectory | ||
dde.utils.plot_loss_history(losshistory) | ||
plt.show() |