-
Notifications
You must be signed in to change notification settings - Fork 774
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
69 additions
and
0 deletions.
There are no files selected for viewing
69 changes: 69 additions & 0 deletions
69
examples/operator/poisson_aligned_multioutput_pideeponet_2d.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
""" | ||
Poisson-like 2D problem | ||
Supported backend: tensorflow.compat.v1, tensorflow | ||
""" | ||
import os | ||
|
||
os.environ["DDEBACKEND"] = "tensorflow.compat.v1" | ||
|
||
import numpy as np | ||
import deepxde as dde | ||
from deepxde.backend import tf | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
|
||
# Two target variables: A and B | ||
# Equations: dA_xx = f, dB_tt = f | ||
def equation(x, y, f): | ||
A = y[:, 0:1] | ||
B = y[:, 1:2] | ||
dA_xx = dde.grad.hessian(y, x, component=0, i=0, j=0) | ||
dB_tt = dde.grad.hessian(y, x, component=1, i=1, j=1) | ||
return [dA_xx - f, dB_tt - f] | ||
|
||
|
||
# Define space/time geometry | ||
geomtime = dde.geometry.GeometryXTime( | ||
dde.geometry.Interval(0, 1), dde.geometry.TimeDomain(0, 1) | ||
) | ||
|
||
# Boundary conditions for A and B | ||
A_bc = dde.icbc.DirichletBC( | ||
geomtime, | ||
lambda _: 0, | ||
lambda _, on_boundary: on_boundary and np.isclose(_[0], 0), | ||
component=0, | ||
) | ||
B_bc = dde.icbc.DirichletBC( | ||
geomtime, | ||
lambda _: 0, | ||
lambda _, on_boundary: on_boundary and np.isclose(_[0], 1), | ||
component=1, | ||
) | ||
|
||
space = dde.data.GRF2D() | ||
evaluation_points = geomtime.uniform_points(10) | ||
|
||
data = dde.data.PDEOperatorCartesianProd( | ||
dde.data.TimePDE( | ||
geomtime, equation, [A_bc, B_bc], num_domain=1000, num_boundary=10 | ||
), | ||
space, | ||
evaluation_points, | ||
num_function=10, | ||
) | ||
|
||
# Define DeepONet with two outputs | ||
net = dde.nn.DeepONetCartesianProd( | ||
[evaluation_points.shape[0], 100, 100], | ||
[geomtime.dim, 100, 100], | ||
activation="tanh", | ||
kernel_initializer="Glorot normal", | ||
num_outputs=2, | ||
) | ||
|
||
# Train model | ||
model = dde.Model(data, net) | ||
model.compile("adam", lr=0.001) | ||
model.train(iterations=5000) |