Skip to content

Commit

Permalink
reformat
Browse files Browse the repository at this point in the history
  • Loading branch information
montyvesselinov committed Nov 5, 2024
1 parent df0b307 commit f902547
Show file tree
Hide file tree
Showing 10 changed files with 76 additions and 77 deletions.
4 changes: 2 additions & 2 deletions examples/contamination/contamination-efast.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,5 +11,5 @@ Mads.wellon!(md, "w20a") # use well w20a
if !isdefined(Mads, :efastresult)
efast_results = Mads.efast(md; N=1000, seed=2016)
end
Mads.plotobsSAresults(md, efastresult; filter=r"w13a", filename="w13a-efast.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]", separate_files=true)
Mads.plotobsSAresults(md, efastresult; filter=r"w20a", filename="w20a-efast.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]", separate_files=true)
Mads.plotobsSAresults(md, efastresult; filter=r"w13a", filename="w13a-efast.svg", xtitle="Time [a]", ytitle="Concentration [ppb]", separate_files=true)
Mads.plotobsSAresults(md, efastresult; filter=r"w20a", filename="w20a-efast.svg", xtitle="Time [a]", ytitle="Concentration [ppb]", separate_files=true)
4 changes: 2 additions & 2 deletions examples/contamination/contamination-saltelli.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,5 +11,5 @@ Mads.wellon!(md, "w20a") # use well w20a
if !isdefined(Mads, :saltelliresult)
saltelli_results = Mads.saltelli(md; N=10000, seed=2016)
end
Mads.plotobsSAresults(md, saltelliresult; filter=r"w13a", filename="w13a-saltelli.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]", separate_files=true)
Mads.plotobsSAresults(md, saltelliresult; filter=r"w20a", filename="w20a-saltelli.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]", separate_files=true)
Mads.plotobsSAresults(md, saltelliresult; filter=r"w13a", filename="w13a-saltelli.svg", xtitle="Time [a]", ytitle="Concentration [ppb]", separate_files=true)
Mads.plotobsSAresults(md, saltelliresult; filter=r"w20a", filename="w20a-saltelli.svg", xtitle="Time [a]", ytitle="Concentration [ppb]", separate_files=true)
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ svrexec, svrread, svrsave, svrclean = Mads.makesvrmodel(md, 1000)

numberofsamples = 100
paramdict = Mads.getparamrandom(md, numberofsamples)
paramarray = hcat(map(i->collect(paramdict[i]), keys(paramdict))...)
paramarray = hcat(map(i -> collect(paramdict[i]), keys(paramdict))...)
@time predictions = Mads.forward(md, paramdict)'

Mads.madsinfo("Model predictions ...")
Expand All @@ -34,10 +34,10 @@ mdsvr["Julia model"] = svrexec
mdsvr["Filename"] = "$rootname-svr.mads"

sasvr = Mads.efast(mdsvr)
Mads.plotobsSAresults(mdsvr, sasvr, format="PNG")
Mads.plotobsSAresults(mdsvr, sasvr; format="PNG")
Mads.display("$rootname-svr-efast-385.png")

svrsave()
svrclean()
svrread()
svrclean()
svrclean()
10 changes: 5 additions & 5 deletions examples/contamination/contamination-w03-w13-svr-efast.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ Mads.wellon!(md, "w13a") # use well w13a
numberofsamples = 100
if !isdefined(Mads, :predictions) || size(predictions) != numberofsamples
paramdict = Mads.getparamrandom(md, numberofsamples)
paramarray = hcat(map(i->collect(paramdict[i]), keys(paramdict))...)
paramarray = hcat(map(i -> collect(paramdict[i]), keys(paramdict))...)
predictions = Mads.forward(md, paramdict)'
end

Expand All @@ -19,14 +19,14 @@ Mads.spaghettiplot(md, predictions; keyword="w13a-training-set", format="PNG")
Mads.display("$rootname-w13a-training-set-$numberofsamples-spaghetti.png")

svrpredictions = Array{Float64}(undef, 0, numberofsamples)
for i=1:50
pmodel = SVR.train(predictions[i,:], paramarray'; eps=0.001, C=10000.);
y_pr = SVR.predict(pmodel, paramarray');
for i = 1:50
pmodel = SVR.train(predictions[i, :], paramarray'; eps=0.001, C=10000.0)
y_pr = SVR.predict(pmodel, paramarray')
SVR.freemodel(pmodel)
svrpredictions = [svrpredictions; y_pr']
end
@show maximum(abs.(svrpredictions .- predictions))

Mads.madsinfo("SVR predictions ...")
Mads.spaghettiplot(md, svrpredictions; keyword="w13a-svr", format="PNG")
Mads.display("$rootname-w13a-svr-$numberofsamples-spaghetti.png")
Mads.display("$rootname-w13a-svr-$numberofsamples-spaghetti.png")
6 changes: 3 additions & 3 deletions examples/contamination/contamination-w03.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,9 @@ Mads.wellon!(md, "w20a") # use well w20a

numberofsamples = 10
paramdict = Mads.getparamrandom(md, numberofsamples)
paramarray = hcat(map(i->collect(paramdict[i]), keys(paramdict))...)
paramarray = hcat(map(i -> collect(paramdict[i]), keys(paramdict))...)
predictions = Mads.forward(md, paramdict)'
wd = Mads.getwelldata(md, time=true)'
wd = Mads.getwelldata(md; time=true)'

# data = Array{Float64}(undef, 0, size(paramarray, 2) + size(wd, 2) + 1)
# for i = 1:numberofsamples
Expand All @@ -34,4 +34,4 @@ Mads.scatterplotsamples(md, permutedims(mcmcchain.value), rootname * "-bayes.png

posterior_predictions = Mads.forward(md, permutedims(mcmcchain.value))
Mads.madsinfo("Posterior (Bayesian) spaghetti plot ...")
Mads.spaghettiplot(md, posterior_predictions; keyword="w13a_w20a-posterior", format="PNG")
Mads.spaghettiplot(md, posterior_predictions; keyword="w13a_w20a-posterior", format="PNG")
10 changes: 5 additions & 5 deletions examples/contamination/contamination-w04-w13-svr-efast-mads.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,18 +11,18 @@ svrexec, svrread, svrsave, svrclean = Mads.makesvrmodel(md, 100)

numberofsamples = 100
paramdict = Mads.getparamrandom(md, numberofsamples)
paramarray = hcat(map(i->collect(paramdict[i]), keys(paramdict))...)
paramarray = hcat(map(i -> collect(paramdict[i]), keys(paramdict))...)
@time predictions = Mads.forward(md, paramdict)'

Mads.madsinfo("Model predictions ...")
Mads.spaghettiplot(md, predictions, keyword="w13a-model", format="PNG")
Mads.spaghettiplot(md, predictions; keyword="w13a-model", format="PNG")
Mads.display("$rootname-w13a-model-$numberofsamples-spaghetti.png")

@time svrpredictions = svrexec(paramarray)
@info("SVR discrepancy $(maximum(abs.(svrpredictions .- predictions)))")

Mads.madsinfo("SVR predictions ...")
Mads.spaghettiplot(md, svrpredictions, keyword="w13a-svr", format="PNG")
Mads.spaghettiplot(md, svrpredictions; keyword="w13a-svr", format="PNG")
Mads.display("$rootname-w13a-svr-$numberofsamples-spaghetti.png")

sa = Mads.efast(md)
Expand All @@ -34,10 +34,10 @@ mdsvr["Julia model"] = svrexec
mdsvr["Filename"] = "$rootname-svr.mads"

sasvr = Mads.efast(mdsvr)
Mads.plotobsSAresults(mdsvr, sasvr, format="PNG")
Mads.plotobsSAresults(mdsvr, sasvr; format="PNG")
Mads.display("$rootname-svr-efast-385.png")

svrsave()
svrclean()
svrread()
svrclean()
svrclean()
6 changes: 3 additions & 3 deletions examples/contamination/contamination-w04-w13-svr-efast.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ Mads.wellon!(md, "w13a") # use well w13a
numberofsamples = 100
if !isdefined(Mads, :predictions) || size(predictions) != numberofsamples
paramdict = Mads.getparamrandom(md, numberofsamples)
paramarray = hcat(map(i->collect(paramdict[i]), keys(paramdict))...)
paramarray = hcat(map(i -> collect(paramdict[i]), keys(paramdict))...)
predictions = Mads.forward(md, paramdict)'
end

Expand All @@ -19,8 +19,8 @@ Mads.spaghettiplot(md, predictions; keyword="w13a-training-set", format="PNG")
Mads.display("$rootname-w13a-training-set-$numberofsamples-spaghetti.png")

svrpredictions = Array{Float64}(undef, 0, numberofsamples)
for i=1:50
pmodel = SVR.train(predictions[i,:], paramarray'; eps=0.001, C=10000.)
for i = 1:50
pmodel = SVR.train(predictions[i, :], paramarray'; eps=0.001, C=10000.0)
y_pr = SVR.predict(pmodel, paramarray')
SVR.freemodel(pmodel)
svrpredictions = [svrpredictions; y_pr']
Expand Down
34 changes: 17 additions & 17 deletions examples/contamination/contamination.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,18 +17,18 @@ Mads.showallparameters(md) # show all the model parameters
Mads.showparameters(md) # show all the adjustable model parameters

# use all wells
Mads.plotmadsproblem(md; keyword = "all_wells") # display the well locations and the initial source location
Mads.plotmadsproblem(md; keyword="all_wells") # display the well locations and the initial source location

forward_predictions = Mads.forward(md) # execute forward model simulation based on initial parameter guesses

Mads.plotmatches(md, forward_predictions; xtitle = "Time [a]", ytitle = "Concentration [ppb]") # plot initial matches
Mads.plotmatches(md, forward_predictions; xtitle="Time [a]", ytitle="Concentration [ppb]") # plot initial matches
Mads.display("w01-match.svg")

inverse_parameters, inverse_results = Mads.calibrate(md) # perform model calibration

inverse_predictions = Mads.forward(md, inverse_parameters) # execute forward model simulation based on calibrated values

Mads.plotmatches(md, inverse_predictions; xtitle = "Time [a]", ytitle = "Concentration [ppb]") # plot calibrated matches
Mads.plotmatches(md, inverse_predictions; xtitle="Time [a]", ytitle="Concentration [ppb]") # plot calibrated matches
Mads.display("w01-match.svg")

# use only two wells
Expand All @@ -37,28 +37,28 @@ Mads.wellon!(md, "w13a") # use well w13a
Mads.wellon!(md, "w20a") # use well w20a
Mads.showobservations(md) # show all the observations

Mads.plotmadsproblem(md; keyword = "w13a_w20a") # display the well locations and the initial source location
Mads.plotmadsproblem(md; keyword="w13a_w20a") # display the well locations and the initial source location

forward_predictions = Mads.forward(md) # execute a forward model simulation based on the initial parameter guesses

Mads.plotmatches(md, forward_predictions, filename = rootname * "-w13a_w20a-init-match.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]") # plot initial matches
Mads.plotmatches(md, forward_predictions; filename=rootname * "-w13a_w20a-init-match.svg", xtitle="Time [a]", ytitle="Concentration [ppb]") # plot initial matches
Mads.display("w01-w13a_w20a-init-match.svg")

inverse_parameters, inverse_results = Mads.calibrate(md) # perform model calibration

inverse_predictions = Mads.forward(md, inverse_parameters) # execute a forward model simulation based on the calibrated values

Mads.plotmatches(md, inverse_predictions; filename = rootname * "-w13a_w20a-calib-match.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]") # plot calibrated matches
Mads.plotmatches(md, inverse_predictions; filename=rootname * "-w13a_w20a-calib-match.svg", xtitle="Time [a]", ytitle="Concentration [ppb]") # plot calibrated matches
Mads.display("w01-w13a_w20a-calib-match.svg")

# Sensitivity analysis: spaghetti plots based on prior parameter uncertainty ranges
Mads.madsinfo("Prior spaghetti plot ...")
paramvalues = Mads.getparamrandom(md, 100)
Mads.spaghettiplot(md, paramvalues; keyword = "w13a_w20a-prior", xtitle = "Time [a]", ytitle = "Concentration [ppb]")
Mads.spaghettiplot(md, paramvalues; keyword="w13a_w20a-prior", xtitle="Time [a]", ytitle="Concentration [ppb]")
Mads.display("w01-w13a_w20a-prior-100-spaghetti.svg")

Mads.madsinfo("Bayesian sampling ...")
mcmcchain = Mads.bayessampling(md, seed = 20151001)
mcmcchain = Mads.bayessampling(md; seed=20151001)

Mads.madsinfo("Bayesian scatter plots ...")
Mads.scatterplotsamples(md, permutedims(mcmcchain.value), rootname * "-bayes.png")
Expand All @@ -68,7 +68,7 @@ Mads.display(rootname * "-bayes.png")
mcmcvalues = Mads.paramarray2dict(md, permutedims(mcmcchain.value))

Mads.madsinfo("Posterior (Bayesian) spaghetti plot ...")
Mads.spaghettiplot(md, mcmcvalues, keyword = "w13a_w20a-posterior", format = "PNG", xtitle = "Time [a]", ytitle = "Concentration [ppb]")
Mads.spaghettiplot(md, mcmcvalues; keyword="w13a_w20a-posterior", format="PNG", xtitle="Time [a]", ytitle="Concentration [ppb]")
Mads.display("w01-w13a_w20a-posterior-1000-spaghetti.png")

# Create a new problem (example)
Expand All @@ -90,27 +90,27 @@ md_new["Sources"][1]["gauss"]["dy"]["init"] = 0 # set a point source
md_new["Sources"][1]["gauss"]["dz"]["init"] = 0 # set a point source
new_forward_predictions = Mads.forward(md_new) # execute a forward model simulation
Mads.setobservationtargets!(md_new, new_forward_predictions) # set calibration targets to match the forward model predictions
Mads.plotmatches(md_new, new_forward_predictions; filename = rootname * "-new-problem.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]")
Mads.plotmatches(md_new, new_forward_predictions; filename=rootname * "-new-problem.svg", xtitle="Time [a]", ytitle="Concentration [ppb]")
Mads.display("w01-new-problem.svg")
Mads.dumpyamlmadsfile(md_new, "w01-new-problem.mads") # write out a new mads input file

# Calibrate with random initial guesses
Mads.allwellsoff!(md_new) # turn off all wells
Mads.wellon!(md_new, "w13a") # use well w13a
Mads.calibraterandom(md_new, 10; seed = 20151001) # calibrate 10 times with random initial guesses
Mads.calibraterandom(md_new, 10; seed=20151001) # calibrate 10 times with random initial guesses

# Global sensitivity analysis using Saltelli's method
saltelli_results = Mads.saltelli(md; N = 1000, seed = 2016)
Mads.plotobsSAresults(md, saltelliresult; filter = r"w13a", filename = "w13a-saltelli.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]")
saltelli_results = Mads.saltelli(md; N=1000, seed=2016)
Mads.plotobsSAresults(md, saltelliresult; filter=r"w13a", filename="w13a-saltelli.svg", xtitle="Time [a]", ytitle="Concentration [ppb]")
Mads.display("w13a-saltelli.svg")
Mads.plotobsSAresults(md, saltelliresult; filter = r"w20a", filename = "w20a-saltelli.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]")
Mads.plotobsSAresults(md, saltelliresult; filter=r"w20a", filename="w20a-saltelli.svg", xtitle="Time [a]", ytitle="Concentration [ppb]")
Mads.display("w20a-saltelli.svg")

# Global sensitivity analysis using Saltelli's eFAST method
efast_results = Mads.efast(md; N = 1000, seed = 2016)
Mads.plotobsSAresults(md, efastresult, filter = r"w13a", filename = "w13a-efast.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]")
efast_results = Mads.efast(md; N=1000, seed=2016)
Mads.plotobsSAresults(md, efastresult; filter=r"w13a", filename="w13a-efast.svg", xtitle="Time [a]", ytitle="Concentration [ppb]")
Mads.display("w13a-efast.svg")
Mads.plotobsSAresults(md, efastresult; filter = r"w20a", filename = "w20a-efast.svg", xtitle = "Time [a]", ytitle = "Concentration [ppb]")
Mads.plotobsSAresults(md, efastresult; filter=r"w20a", filename="w20a-efast.svg", xtitle="Time [a]", ytitle="Concentration [ppb]")
Mads.display("w20a-efast.svg")

cd(currentdir)
51 changes: 25 additions & 26 deletions examples/contamination/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -82,8 +82,8 @@ if !haskey(ENV, "MADS_NO_GADFLY")
Mads.spaghettiplots(md, paramvalues; keyword="w13a_w20a")
Mads.spaghettiplot(md, paramvalues; keyword="w13a_w20a")
s = splitdir(rootname)
for filesinadir in Mads.searchdir(Regex(string(s[2], "-w13a_w20a", "[.]*", "spaghetti.svg")), path=s[1])
Mads.rmfile(filesinadir, path=s[1])
for filesinadir in Mads.searchdir(Regex(string(s[2], "-w13a_w20a", "[.]*", "spaghetti.svg")); path=s[1])
Mads.rmfile(filesinadir; path=s[1])
end

sa_results = Mads.saltelli(md; N=5, seed=2015)
Expand All @@ -108,43 +108,42 @@ Test.@testset "Contamination" begin
Test.@test forward_predictions_source == forward_predictions
Test.@test isapprox(sum(abs.(forward_predictions_vector .- good_forward_predictions)), 0, atol=1e-4)
Test.@test isapprox(sum(abs.(jacobian .- good_jacobian)), 0, atol=1e-4)
Test.@test isapprox(Statistics.mean([abs.(param_values[i] - [40.0,4.0,15.0][i]) for i=1:3]), 0, atol=1e-4)
Test.@test isapprox(Statistics.mean([abs.(param_values[i] - [40.0, 4.0, 15.0][i]) for i = 1:3]), 0, atol=1e-4)
Test.@test all(Mads.getwelldata(md) .== [1608.0 2113.0; 1491.0 1479.0; 3.0 3.0])

t = isapprox(Statistics.mean([abs.(samples[i] - good_samples[i]) for i=1:size(good_samples)[1]+20]), 0, atol=1e-4)
t = isapprox(Statistics.mean([abs.(samples[i] - good_samples[i]) for i = 1:(size(good_samples)[1] + 20)]), 0; atol=1e-4)
if t
Test.@test isapprox(Statistics.mean([abs.(samples[i] - good_samples[i]) for i=1:size(good_samples)[1]+20]), 0, atol=1e-4)
Test.@test isapprox(Statistics.mean([abs.(samples[i] - good_samples[i]) for i = 1:(size(good_samples)[1] + 20)]), 0, atol=1e-4)
else
@show samples
end

t = isapprox(Statistics.mean([abs.(llhoods[i] - good_llhoods[i]) for i=1:size(good_llhoods)[1]]), 0, atol=1e-4)
t = isapprox(Statistics.mean([abs.(llhoods[i] - good_llhoods[i]) for i = 1:size(good_llhoods)[1]]), 0; atol=1e-4)
if t
Test.@test isapprox(Statistics.mean([abs.(llhoods[i] - good_llhoods[i]) for i=1:size(good_llhoods)[1]]), 0, atol=1e-4)
Test.@test isapprox(Statistics.mean([abs.(llhoods[i] - good_llhoods[i]) for i = 1:size(good_llhoods)[1]]), 0, atol=1e-4)
else
@show good_llhoods
@show llhoods
end


t = isapprox(Statistics.mean([abs.(newllhoods[i] - good_newllhoods[i]) for i=1:size(newllhoods)[1]]), 0, atol=1e-3)
t = isapprox(Statistics.mean([abs.(newllhoods[i] - good_newllhoods[i]) for i = 1:size(newllhoods)[1]]), 0; atol=1e-3)
if t
Test.@test isapprox(Statistics.mean([abs.(newllhoods[i] - good_newllhoods[i]) for i=1:size(newllhoods)[1]]), 0, atol=1e-3)
Test.@test isapprox(Statistics.mean([abs.(newllhoods[i] - good_newllhoods[i]) for i = 1:size(newllhoods)[1]]), 0, atol=1e-3)
else
@show good_newllhoods
@show newllhoods
end

t = isapprox(Statistics.mean([abs.(Mads.computemass(md; time=50.0)[i] - (550.0,0)[i]) for i=1:2]), 0, atol=1e-5)
t = isapprox(Statistics.mean([abs.(Mads.computemass(md; time=50.0)[i] - (550.0, 0)[i]) for i = 1:2]), 0; atol=1e-5)
if t
Test.@test isapprox(Statistics.mean([abs.(Mads.computemass(md; time=50.0)[i] - (550.0,0)[i]) for i=1:2]), 0, atol=1e-5)
Test.@test isapprox(Statistics.mean([abs.(Mads.computemass(md; time=50.0)[i] - (550.0, 0)[i]) for i = 1:2]), 0, atol=1e-5)
else
@show Mads.computemass(md; time=50.0)
end

t = isapprox(Statistics.mean([abs.(Mads.computemass(md)[i] - (550.0,0)[i]) for i=1:2]), 0, atol=1e-5)
t = isapprox(Statistics.mean([abs.(Mads.computemass(md)[i] - (550.0, 0)[i]) for i = 1:2]), 0; atol=1e-5)
if t
Test.@test isapprox(Statistics.mean([abs.(Mads.computemass(md)[i] - (550.0,0)[i]) for i=1:2]), 0, atol=1e-5)
Test.@test isapprox(Statistics.mean([abs.(Mads.computemass(md)[i] - (550.0, 0)[i]) for i = 1:2]), 0, atol=1e-5)
else
@show Mads.computemass(md)
end
Expand All @@ -153,31 +152,31 @@ Test.@testset "Contamination" begin
good_inverse_preds = JLD2.load(joinpath(workdir, "test_results", "inverse_predictions.jld2"), "inverse_predictions")

# Testing time-based well data against itself
ssr = 0.
for i=1:size(good_welldata_time)[1]
for j=1:size(good_welldata_time)[2]
ssr += (welldata_time[i*j] - good_welldata_time[i*j])^2
ssr = 0.0
for i = 1:size(good_welldata_time)[1]
for j = 1:size(good_welldata_time)[2]
ssr += (welldata_time[i * j] - good_welldata_time[i * j])^2
end
end

t = isapprox(ssr, 0., atol=1e-8)
t = isapprox(ssr, 0.0; atol=1e-8)
if t
Test.@test isapprox(ssr, 0., atol=1e-8)
Test.@test isapprox(ssr, 0.0, atol=1e-8)
else
@show welldata_time
@show good_welldata_time
@show ssr
end

# Testing inverse predictions against itself
ssr = 0.
ssr = 0.0
for obskey in union(Set(keys(inverse_predictions)), Set(keys(good_inverse_preds)))
ssr += (inverse_predictions[obskey] - good_inverse_preds[obskey])^2
end

t = isapprox(ssr, 0., atol=1e-8)
t = isapprox(ssr, 0.0; atol=1e-8)
if t
Test.@test isapprox(ssr, 0., atol=1e-8)
Test.@test isapprox(ssr, 0.0, atol=1e-8)
else
@show inverse_predictions
@show good_inverse_preds
Expand All @@ -189,10 +188,10 @@ Mads.@stdouterrcapture Mads.addsource!(md)
Mads.@stdouterrcapture Mads.removesource!(md)

Mads.rmfile(joinpath(workdir, "w01-w13a_w20a-match.svg"))
Mads.rmfile(joinpath(workdir,"w01-w13a_w20a.initialresults"))
Mads.rmfile(joinpath(workdir,"w01-w13a_w20a_saltelli_5.jld2"))
Mads.rmfile(joinpath(workdir, "w01-w13a_w20a.initialresults"))
Mads.rmfile(joinpath(workdir, "w01-w13a_w20a_saltelli_5.jld2"))

Mads.veryquietoff()
Mads.graphon()

:passed
:passed
Loading

0 comments on commit f902547

Please sign in to comment.