-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
164 lines (122 loc) · 5.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import pickle
import argparse
import logging
import shutil
import torch.nn as nn
import torch
from tensorboard_logger import tensorboard_logger
from torch import optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tqdm import tqdm, trange
from dataset import KnowledgeGraphDataset, collate_train, collate_valid
from model import ConvE
from util import AttributeDict
logger = logging.getLogger(__file__)
class StableBCELoss(nn.modules.Module):
def __init__(self):
super(StableBCELoss, self).__init__()
def forward(self, input, target):
neg_abs = - input.abs()
loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log()
return loss.mean()
def train(epoch, data, conv_e, criterion, optimizer, args):
train_set = DataLoader(
KnowledgeGraphDataset(data.x, data.y, e_to_index=data.e_to_index, r_to_index=data.r_to_index),
collate_fn=collate_train, batch_size=args.batch_size, num_workers=4, shuffle=True)
progress_bar = tqdm(iter(train_set))
moving_loss = 0
conv_e.train(True)
y_multihot = torch.LongTensor(args.batch_size, len(data.e_to_index))
for s, r, os in progress_bar:
s, r = Variable(s).cuda(), Variable(r).cuda()
if s.size()[0] != args.batch_size:
y_multihot = torch.LongTensor(s.size()[0], len(data.e_to_index))
y_multihot.zero_()
y_multihot = y_multihot.scatter_(1, os, 1)
y_smooth = (1 - args.label_smooth) * y_multihot.float() + args.label_smooth / len(data.e_to_index)
targets = Variable(y_smooth, requires_grad=False).cuda()
output = conv_e(s, r)
loss = criterion(output, targets)
loss.backward()
optimizer.step()
conv_e.zero_grad()
if moving_loss == 0:
moving_loss = loss.data[0]
else:
moving_loss = moving_loss * 0.9 + loss.data[0] * 0.1
progress_bar.set_description(
'Epoch: {}; Loss: {:.5f}; Avg: {:.5f}'.format(epoch + 1, loss.data[0], moving_loss))
logger.info('Epoch: {}; Loss: {:.5f}; Avg: {:.5f}'.format(epoch + 1, loss.data[0], moving_loss))
tensorboard_logger.log_value('avg loss', moving_loss, epoch + 1)
tensorboard_logger.log_value('loss', loss.data[0], epoch + 1)
def valid(epoch, data, conv_e, batch_size, log_decs):
dataset = KnowledgeGraphDataset(data.x, data.y, e_to_index=data.e_to_index, r_to_index=data.r_to_index)
valid_set = DataLoader(dataset, collate_fn=collate_valid, batch_size=batch_size, num_workers=4, shuffle=True)
conv_e.train(False)
ranks = list()
for s, r, os in tqdm(iter(valid_set)):
s, r = Variable(s).cuda(), Variable(r).cuda()
output = conv_e.test(s, r)
for i in range(min(batch_size, s.size()[0])):
_, top_indices = output[i].topk(output.size()[1])
for o in os[i]:
_, rank = (top_indices == o).max(dim=0)
ranks.append(rank.data[0] + 1)
ranks_t = torch.FloatTensor(ranks)
mr = ranks_t.mean()
mrr = (1 / ranks_t).mean()
logger.info(log_decs + ' MR: {:.3f}, MRR: {:.10f}'.format(mr, mrr))
tensorboard_logger.log_value(log_decs + ' mr', mr, epoch + 1)
tensorboard_logger.log_value(log_decs + ' mrr', mrr, epoch + 1)
def parse_args():
parser = argparse.ArgumentParser(description='Train ConvE with PyTorch.')
parser.add_argument('train_path', action='store', type=str,
help='Path to training .pkl produced by preprocess.py')
parser.add_argument('valid_path', action='store', type=str,
help='Path to valid/test .pkl produced by preprocess.py')
parser.add_argument('--name', action='store', type=str, default='',
help='name of the model, used to create a subfolder to save checkpoints')
parser.add_argument('--batch-size', action='store', type=int, dest='batch_size', default=256)
parser.add_argument('--epochs', action='store', type=int, dest='epochs', default=90)
parser.add_argument('--label-smooth', action='store', type=float, dest='label_smooth', default=.1)
parser.add_argument('--log-file', action='store', type=str)
return parser.parse_args()
def setup_logger(args):
log_file = args.log_file
tensorboard_log_dir = 'tensorboard_' + args.name
shutil.rmtree(tensorboard_log_dir)
if args.log_file is None:
if args.name == '':
log_file = 'train.log'
else:
log_file = args.name + '.log'
print('Logging to: ' + log_file)
logging.basicConfig(filename=log_file, level=logging.INFO)
tensorboard_logger.configure(tensorboard_log_dir)
def main():
args = parse_args()
setup_logger(args)
checkpoint_path = 'checkpoint-{}'.format(args.name)
os.makedirs(checkpoint_path, exist_ok=True)
with open(args.train_path, 'rb') as f:
train_data = AttributeDict(pickle.load(f))
with open(args.valid_path, 'rb') as f:
valid_data = AttributeDict(pickle.load(f))
# always use training data dictionaries
valid_data.e_to_index = train_data.e_to_index
valid_data.index_to_e = train_data.index_to_e
valid_data.r_to_index = train_data.r_to_index
valid_data.index_to_r = train_data.index_to_r
conv_e = ConvE(num_e=len(train_data.e_to_index), num_r=len(train_data.r_to_index)).cuda()
criterion = StableBCELoss()
optimizer = optim.Adam(conv_e.parameters(), lr=0.003)
for epoch in trange(args.epochs):
train(epoch, train_data, conv_e, criterion, optimizer, args)
valid(epoch, train_data, conv_e, args.batch_size, 'train')
valid(epoch, valid_data, conv_e, args.batch_size, 'valid')
with open('{}/checkpoint_{}.model'.format(checkpoint_path, str(epoch + 1).zfill(2)), 'wb') as f:
torch.save(conv_e, f)
if __name__ == '__main__':
main()