Implementation of ConvE proposed by Dettmers et al. in Convolutional 2D Knowledge Graph Embeddings. You can find the official repository with knowledge graph datasets here.
Implementation uses PyTorch.
usage: preprocess.py [-h] {train,valid} ...
Preprocess knowledge graph csv train/valid (test) data.
positional arguments:
{train,valid} mode
train Preprocess a training set
valid Preprocess a valid or test set
optional arguments:
-h, --help show this help message and exit
python preprocess.py train ../train.tsv
python preprocess.py valid ../train.pkl ../valid.tsv
python train.py ../train.pkl ../valid.pkl
usage: train.py [-h] [--name NAME] [--batch-size BATCH_SIZE] [--epochs EPOCHS]
[--label-smooth LABEL_SMOOTH]
train_path valid_path
Train ConvE with PyTorch.
positional arguments:
train_path Path to training .pkl produced by preprocess.py
valid_path Path to valid/test .pkl produced by preprocess.py
optional arguments:
-h, --help show this help message and exit
--name NAME name of the model, used to create a subfolder to save
checkpoints
--batch-size BATCH_SIZE
--epochs EPOCHS
--label-smooth LABEL_SMOOTH