forked from oracle-fab/KIA4SM_LSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallel_search.py
137 lines (94 loc) · 4.77 KB
/
parallel_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import pickle
import time
import tensorboard
from keras.callbacks import TensorBoard, EarlyStopping
import numpy as np
import sys
np.set_printoptions ( threshold=sys.maxsize )
# from keras.callbacks import TensorBoard
from keras.layers import Input, Dense, Dropout
from keras.layers import LSTM, CuDNNLSTM
from keras.models import Model
from keras.optimizers import Adam
from sklearn.model_selection import train_test_split
name = "42_-{}".format ( int ( time.time () ) )
tensorboard = TensorBoard ( log_dir="logs42/{}".format ( name ), write_graph=True, write_grads=False,
write_images=False, update_freq='epoch' )
es = EarlyStopping ( monitor='val_loss', mode='min', verbose=1 )
with open ( '42_features', 'rb' ) as fp:
X = pickle.load ( fp )
with open ( '42_labels', 'rb' ) as fp:
y = pickle.load ( fp )
X = np.expand_dims ( X, axis=2 )
newy = []
count = 0
for val in y:
if val == 0:
count += 1
newy.append ( np.array ( [1, 0] ) )
else:
newy.append ( np.array ( [0, 1] ) )
y = np.array ( newy )
print ( count )
X_train, X_test, y_train, y_test = train_test_split ( X, y, test_size=0.3 )
input = Input ( shape=(42, 1) )
fi = 0
arr = [] ## to save the trials
import csv
csvfile = "optimization_oneLSTM_oneDense.csv"
with open ( csvfile, "w" ) as csvoutput:
writer = csv.writer ( csvoutput, lineterminator='\n' )
writer.writerow ( ["Trial number", "LSTM size", "Dense size", "Dropout Ratio", "Batch Size", "Activation Function",
"Number of Epoch", "Accuracy", "Best Val_Loss"] )
# fi+= 1
dense_layer_sizes = [64, 128, 256, 512]
layer_sizes = [64, 128, 256]
n_dropout = [0, 0.2, 0.4, 0.6]
batch_s = [16, 32, 64, 128]
input = Input ( shape=(42, 1) )
print ( input.shape )
for i in range ( 0, len ( layer_sizes ) ):
for s in range ( 0, len ( dense_layer_sizes ) ):
for dro in range ( 0, len ( n_dropout ) ):
for bs in range ( len ( batch_s ) ):
NAME = "{}-1st-LSTM-{}-1st-dense-dropout-{}-batch-{}-FI{}".format ( layer_sizes[i],
dense_layer_sizes[s],
n_dropout[dro], batch_s[bs], fi )
tensorboard = TensorBoard ( log_dir="logs/{}".format ( NAME ) )
lstm_model = CuDNNLSTM ( layer_sizes[i], return_sequences=True ) ( input )
lstm_model = CuDNNLSTM ( layer_sizes[i] * 2 ) ( input )
if (layer_sizes[i]) == s:
d = Dense ( dense_layer_sizes[s], activation='relu' ) ( lstm_model )
d = Dropout ( n_dropout[dro] ) ( d )
d = Dense ( dense_layer_sizes[s] * 2, activation='relu' ) ( d )
d = Dropout ( n_dropout[dro] ) ( d )
d = Dense ( dense_layer_sizes[s] * 4, activation='relu' ) ( d )
d = Dropout ( n_dropout[dro] ) ( d )
d = Dense ( dense_layer_sizes[s] * 8, activation='relu' ) ( d )
d = Dropout ( n_dropout[dro] ) ( d )
else:
d = Dense ( dense_layer_sizes[i] * 2, activation='relu' ) ( lstm_model )
d = Dropout ( n_dropout[dro] ) ( d )
d = Dense ( dense_layer_sizes[i] * 4, activation='relu' ) ( d )
d = Dropout ( n_dropout[dro] ) ( d )
d = Dense ( dense_layer_sizes[i] * 8, activation='relu' ) ( d )
d = Dropout ( n_dropout[dro] ) ( d )
d = Dense ( dense_layer_sizes[i] * 16, activation='relu' ) ( d )
d = Dropout ( n_dropout[dro] ) ( d )
output = Dense ( 2, activation='softmax' ) ( d )
model = Model ( inputs=input, outputs=output )
adam = Adam ( lr=0.0001 )
model.compile ( optimizer=adam, loss='binary_crossentropy', metrics=['acc'] )
model.fit ( X_train, y_train, batch_size=batch_s[bs], epochs=100, validation_data=(X_test, y_test),
callbacks=[tensorboard, es] )
model.save ( '{}.h5'.format ( NAME ) )
when = es.stopped_epoch
bes = es.best
fi += 1
arr.append (
[fi, layer_sizes[i], dense_layer_sizes[s], n_dropout[dro], batch_s[bs], 'relu', when, bes] )
with open ( csvfile, "a",
newline='' ) as csvoutput: # 'a' parameter allows you to append to the end of the file instead of simply overwriting the existing content
# with open(csvfile, "w") as csvoutput:
writer = csv.writer ( csvoutput )
writer.writerows ( arr )