Skip to content

Codebase to train, evaluate and compare image segmentation models

License

Notifications You must be signed in to change notification settings

manisa/IterLUNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IterLUnet: Deep Learning Architecture for Pixel-Wise Crack Detection in Levee Systems

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.

Prerequisites

You would need to install the following software before replicating this framework in your local or server machine.

Python version 3.7+
Aanaconda version 3+
TensorFlow version 2.6.0
Keras version 2.6.0

Download and install code

  • Retrieve the code
git clone https://github.com/manisa/IterLUNet.git
cd IterLUNet
  • Create and activate the virtual environment with python dependendencies.
conda create -n gpu-tf tensorflow-gpu
conda activate gpu-tf
source installPackages.sh

Folder Structure

IterLUNet/
	archs/
	lib/
	dataset/
		experiment_3/
	models/
		experiment_3/

Download datasets

IterLUNet/
	dataset/
		experiment_3/
			train/
				images/
				masks/
			test/
				images/
				masks/

Download trained models

IterLUNet/
	models/
		experiment_1/
		experiment_2/
		experiment_3/

Training

  • To replicate the training procedure, follow following command line.
cd src
python train.py --model_type=iterlunet --input_filters=64 --lr=2e-3 --loss_function='focal_tversky_loss' --model_path='./models/iterlunet'  --train_valid_path='./datasets/experiment_3/train/'

Authors

Manisha Panta, Md Tamjidul Hoque, Mahdi Abdelguerfi, Maik C. Flanagin

License

This project is licensed under the MIT License - see the LICENSE.md file for details

About

Codebase to train, evaluate and compare image segmentation models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published