Official PyTorch implementation of "IVAH: Invisible-Region Augmented Human Rendering from Monocular Images"
IVAH is trained and tested on an RTX A6000 GPU, we recommend to use GPU that has more than 24GB GPU memory to train the model.
This framework is tested on Ubuntu 20.04, Python3.8 and CUDA 11.3
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
or
conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md
pip install fvcore iopath
pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu113_pyt1110/download.html
pip install -r requirements.txt
Download pre-trained weights from below link: https://www.dropbox.com/scl/fo/gzthflt7klqzjtiaxnvgn/AHAXkJSsEG0l57uiEPLT3d8?rlkey=mch033t1qsqobwlcry33btz6t&st=2su67umf&dl=0
- Put downloaded BackNet weights in back_generator_ckpts like below:
root
└── back_generator_ckpts
├── humman
│ ├── val_results_humman.txt
│ └── weights
│ ├── GNR-model-snapshot-0080.txt
│ └── humman_backnet_060.pth
├── renderpeople
│ ├── val_results_RenderPeople.txt
│ └── weights
│ └── renderpeople_backnet_040.pth
├── thuman1
│ ├── val_results_thuman1.txt
│ └── weights
│ └── thuman1_backnet_060.pth
└── thuman2
├── val_results_thuman2.txt
└── weights
└── thuman2_backnet_060.pth
- Put downloaded trained IVAH checkpoints into the experiments directory like below:
root
└── experiments
├── humman
│ └── full_model
│ ├── <yaml file>
│ └── <ckpt file(.tar)>
├── renderpeople
│ ├── full_model
│ ├── <yaml file>
│ └── <ckpt file(.tar)>
├── thuman1
│ └── full_model
│ ├── <yaml file>
│ └── <ckpt file(.tar)>
└── thuman2
└── full_model
├── <yaml file>
└── <ckpt file(.tar)>