Source code for paper "JEDE: Joint Event Detection and Evolution Model via Siamese GRU Attention Network"
- Python 3.6
- numpy
- scipy
- keras 2.2
- My machine with two GPUs (NVIDIA GTX-1080 *2) and two CPUs (Intel Xeon E5-2690 * 2)
JEDE/
├── code(1.0)
│ ├── The first version can be seen as a separate implementation of two subtasks.
│ ├── evaluation
│ │ └── evalu.py: evaluate the performance of event cluster and evolution
│ ├── models
│ │ ├── model.py: the model with some functions
│ │ └── similar.py: the simalarity between docuemnts or events
│ ├── preData
│ │ └── data_loader.py: load the data from CNESC.txt
│ ├── class
│ │ └── my_class.py:custom class including docuemnt,cluster,syory
│ ├── layer
│ │ └── att_layer.py: Attention Mechanism
│ │ └── fir_layer.py: Text preprocessing
│ │ └── cluster_layer.py: documents cluster to events
│ │ └── story_layer.py: events grow to story
│ ├── output
│ │ └── output.py: output to file event_evolution.txt
├── CODE(2.0)
│ ├── The second edition is the final algorithm, improved algorithm and added contrast experiment
│ ├── model.py: the model with some functions
│ ├── similar.py: the simalarity between docuemnts or events
│ ├── data_loader.py: load the data from CNESC.txt
│ ├── fir_layer.py: Text preprocessing
│ ├── cluster_layer.py: documents cluster to events
│ ├── story_layer.py: events grow to story
│ ├── output.py: output to file event_evolution.txt
│ ├── dbscan.py: contrast algorithm (event detection)
│ ├── lsh.py: contrast algorithm (event detection)
│ ├── jeds.py: contrast algorithm (event detection)
│ └── main.py: train model
├── DATA
│ └── CNESC.txt: docuemnts set,the first line is (story_id, event_id ,title, content, keyword, time)
│ └── our_raw_labled_data: docuemnts set,the first line is (story_id, event_id ,title, content, keyword, time)
└── README.md
- code : https://github.com/BangLiu/StoryForest.git
- paper: arXiv:1803.00189
- code : CODE/jeds.py
- paper: https://www.ijcai.org/proceedings/2017/581