Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[7.1.r1] Sync with upstream #136

Open
wants to merge 53 commits into
base: hybris-sony-aosp/LA.UM.7.1.r1
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
53 commits
Select commit Hold shift + click to select a range
5118d26
usb: gadget: ffs: Remove IPC logging support
voidanix Jan 22, 2023
648c02e
treewide: Linux 4.14.265
voidanix Jan 22, 2023
b50cd70
treewide: Linux 4.14.266
voidanix Jan 22, 2023
9f58fe6
treewide: Linux 4.14.267
voidanix Jan 22, 2023
cba16b1
treewide: Linux 4.14.268
voidanix Jan 22, 2023
911afb8
treewide: Linux 4.14.269
voidanix Jan 22, 2023
2e902fd
treewide: Linux 4.14.270
voidanix Jan 22, 2023
dbebcba
treewide: Linux 4.14.271
voidanix Jan 22, 2023
e62ff9c
treewide: Linux 4.14.272
voidanix Jan 22, 2023
c7cf157
treewide: Linux 4.14.273
voidanix Jan 22, 2023
70fb65f
treewide: Linux 4.14.274
voidanix Jan 22, 2023
35f9cdd
treewide: Linux 4.14.275
voidanix Feb 6, 2023
7bf76ca
arm64: Verify PSCI conduit for ARM_SMCCC_ARCH_WORKAROUND_2
voidanix Oct 30, 2022
20bd660
arm64: ssbd: Remove assembly logic for apply_ssbd
voidanix Oct 30, 2022
7818e75
treewide: Linux 4.14.276
voidanix Feb 6, 2023
e6823ad
treewide: Linux 4.14.277
voidanix Feb 6, 2023
e4acdd9
treewide: Linux 4.14.278
voidanix Feb 6, 2023
f08d457
treewide: Linux 4.14.279
voidanix Feb 6, 2023
fa0731d
treewide: Linux 4.14.280
voidanix Feb 6, 2023
5b313df
treewide: Linux 4.14.281
voidanix Feb 9, 2023
5abe188
treewide: Linux 4.14.282
voidanix Feb 9, 2023
6b2d7b8
treewide: Linux 4.14.283
voidanix Feb 9, 2023
d0bdaf5
treewide: Linux 4.14.284
voidanix Feb 9, 2023
419a6f5
input: ts: atmel_mxt640u: Fix misplaced break in drm_notifier_callback
bartcubbins Jun 14, 2023
9795d1f
treewide: Linux 4.14.285
voidanix Jan 31, 2021
d025d64
early_random: Fill HW rng with add_bootloader_randomness
Jul 14, 2022
3d6c2a5
drivers: soc: qcom: Use random.h header
voidanix Nov 2, 2022
6a97840
Revert "arm64: setup: introduce arch_read_machine_name API"
voidanix Nov 2, 2022
6b23514
arm64: map FDT as RW for early_init_dt_scan()
hsinyi527 Aug 23, 2019
d516145
treewide: Linux 4.14.286
voidanix Jan 5, 2021
c1860c1
treewide: Linux 4.14.287
voidanix Jun 1, 2022
c9741e0
treewide: Linux 4.14.288
voidanix Apr 13, 2022
5a6988f
treewide: Linux 4.14.289
voidanix Jul 12, 2022
16db367
xhci: Remove xhci_handshake_check_state API
voidanix Nov 2, 2022
871580e
treewide: Linux 4.14.290
voidanix Jul 10, 2022
90ee482
treewide: Linux 4.14.291
voidanix Jul 21, 2022
f4094f4
treewide: Linux 4.14.292
voidanix Aug 22, 2022
0ac28a6
treewide: Linux 4.14.293
voidanix Sep 6, 2022
fb9405f
treewide: Linux 4.14.294
voidanix Sep 15, 2022
d512f2a
treewide: Linux 4.14.295
voidanix Dec 12, 2022
0e7a3cd
treewide: Linux 4.14.296
voidanix Dec 12, 2022
a4d2461
treewide: Linux 4.14.297
voidanix Dec 12, 2022
fe2fefa
treewide: Linux 4.14.298
voidanix Dec 13, 2022
01f30ee
treewide: Linux 4.14.299
voidanix Dec 13, 2022
b21789d
treewide: Linux 4.14.300
voidanix Dec 13, 2022
debb813
treewide: Linux 4.14.301
voidanix Oct 14, 2022
fc73ef9
treewide: Linux 4.14.302
voidanix Oct 24, 2022
a71e1af
treewide: Linux 4.14.303
voidanix Jul 25, 2020
1d986b8
treewide: Linux 4.14.304
voidanix Dec 20, 2022
f8b4efb
arm64: dts: qcom: sm8150: Correct addresses from 55.2.A.xxx
voidanix Nov 8, 2023
be8fb34
crypto: chacha20-generic: Sync with upstream Sony
voidanix Nov 12, 2023
a9d52fb
Merge remote-tracking branch 'sony/aosp/LA.UM.7.1.r1' into hybris-son…
voidanix Nov 12, 2023
1f44f33
arm64: dts: SoMC: Akatsuki: Set SDE to max performance mode
kholk May 7, 2020
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
5 changes: 3 additions & 2 deletions Documentation/ABI/testing/sysfs-ata
Original file line number Diff line number Diff line change
Expand Up @@ -59,17 +59,18 @@ class

dma_mode

Transfer modes supported by the device when in DMA mode.
DMA transfer mode used by the device.
Mostly used by PATA device.

pio_mode

Transfer modes supported by the device when in PIO mode.
PIO transfer mode used by the device.
Mostly used by PATA device.

xfer_mode

Current transfer mode.
Mostly used by PATA device.

id

Expand Down
2 changes: 1 addition & 1 deletion Documentation/ABI/testing/sysfs-bus-iio
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ Description:
Raw capacitance measurement from channel Y. Units after
application of scale and offset are nanofarads.

What: /sys/.../iio:deviceX/in_capacitanceY-in_capacitanceZ_raw
What: /sys/.../iio:deviceX/in_capacitanceY-capacitanceZ_raw
KernelVersion: 3.2
Contact: [email protected]
Description:
Expand Down
2 changes: 1 addition & 1 deletion Documentation/ABI/testing/sysfs-bus-iio-vf610
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
What: /sys/bus/iio/devices/iio:deviceX/conversion_mode
What: /sys/bus/iio/devices/iio:deviceX/in_conversion_mode
KernelVersion: 4.2
Contact: [email protected]
Description:
Expand Down
1 change: 1 addition & 0 deletions Documentation/ABI/testing/sysfs-devices-system-cpu
Original file line number Diff line number Diff line change
Expand Up @@ -384,6 +384,7 @@ What: /sys/devices/system/cpu/vulnerabilities
/sys/devices/system/cpu/vulnerabilities/srbds
/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
/sys/devices/system/cpu/vulnerabilities/itlb_multihit
/sys/devices/system/cpu/vulnerabilities/mmio_stale_data
Date: January 2018
Contact: Linux kernel mailing list <[email protected]>
Description: Information about CPU vulnerabilities
Expand Down
2 changes: 1 addition & 1 deletion Documentation/DMA-attributes.txt
Original file line number Diff line number Diff line change
Expand Up @@ -162,4 +162,4 @@ DMA_ATTR_IOMMU_USE_LLC_NWA

DMA_ATTR_IOMMU_USE_LLC_NWA: Overrides the bus attributes to use
System Cache(LLC) with allocation policy as Inner Non-Cacheable, Outer Cacheable:
Write-Back, Read-Allocate, No Write-Allocate policy.
Write-Back, Read-Allocate, No Write-Allocate policy.
1 change: 1 addition & 0 deletions Documentation/admin-guide/hw-vuln/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -15,3 +15,4 @@ are configurable at compile, boot or run time.
tsx_async_abort
multihit.rst
special-register-buffer-data-sampling.rst
processor_mmio_stale_data.rst
260 changes: 260 additions & 0 deletions Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,260 @@
=========================================
Processor MMIO Stale Data Vulnerabilities
=========================================

Processor MMIO Stale Data Vulnerabilities are a class of memory-mapped I/O
(MMIO) vulnerabilities that can expose data. The sequences of operations for
exposing data range from simple to very complex. Because most of the
vulnerabilities require the attacker to have access to MMIO, many environments
are not affected. System environments using virtualization where MMIO access is
provided to untrusted guests may need mitigation. These vulnerabilities are
not transient execution attacks. However, these vulnerabilities may propagate
stale data into core fill buffers where the data can subsequently be inferred
by an unmitigated transient execution attack. Mitigation for these
vulnerabilities includes a combination of microcode update and software
changes, depending on the platform and usage model. Some of these mitigations
are similar to those used to mitigate Microarchitectural Data Sampling (MDS) or
those used to mitigate Special Register Buffer Data Sampling (SRBDS).

Data Propagators
================
Propagators are operations that result in stale data being copied or moved from
one microarchitectural buffer or register to another. Processor MMIO Stale Data
Vulnerabilities are operations that may result in stale data being directly
read into an architectural, software-visible state or sampled from a buffer or
register.

Fill Buffer Stale Data Propagator (FBSDP)
-----------------------------------------
Stale data may propagate from fill buffers (FB) into the non-coherent portion
of the uncore on some non-coherent writes. Fill buffer propagation by itself
does not make stale data architecturally visible. Stale data must be propagated
to a location where it is subject to reading or sampling.

Sideband Stale Data Propagator (SSDP)
-------------------------------------
The sideband stale data propagator (SSDP) is limited to the client (including
Intel Xeon server E3) uncore implementation. The sideband response buffer is
shared by all client cores. For non-coherent reads that go to sideband
destinations, the uncore logic returns 64 bytes of data to the core, including
both requested data and unrequested stale data, from a transaction buffer and
the sideband response buffer. As a result, stale data from the sideband
response and transaction buffers may now reside in a core fill buffer.

Primary Stale Data Propagator (PSDP)
------------------------------------
The primary stale data propagator (PSDP) is limited to the client (including
Intel Xeon server E3) uncore implementation. Similar to the sideband response
buffer, the primary response buffer is shared by all client cores. For some
processors, MMIO primary reads will return 64 bytes of data to the core fill
buffer including both requested data and unrequested stale data. This is
similar to the sideband stale data propagator.

Vulnerabilities
===============
Device Register Partial Write (DRPW) (CVE-2022-21166)
-----------------------------------------------------
Some endpoint MMIO registers incorrectly handle writes that are smaller than
the register size. Instead of aborting the write or only copying the correct
subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than
specified by the write transaction may be written to the register. On
processors affected by FBSDP, this may expose stale data from the fill buffers
of the core that created the write transaction.

Shared Buffers Data Sampling (SBDS) (CVE-2022-21125)
----------------------------------------------------
After propagators may have moved data around the uncore and copied stale data
into client core fill buffers, processors affected by MFBDS can leak data from
the fill buffer. It is limited to the client (including Intel Xeon server E3)
uncore implementation.

Shared Buffers Data Read (SBDR) (CVE-2022-21123)
------------------------------------------------
It is similar to Shared Buffer Data Sampling (SBDS) except that the data is
directly read into the architectural software-visible state. It is limited to
the client (including Intel Xeon server E3) uncore implementation.

Affected Processors
===================
Not all the CPUs are affected by all the variants. For instance, most
processors for the server market (excluding Intel Xeon E3 processors) are
impacted by only Device Register Partial Write (DRPW).

Below is the list of affected Intel processors [#f1]_:

=================== ============ =========
Common name Family_Model Steppings
=================== ============ =========
HASWELL_X 06_3FH 2,4
SKYLAKE_L 06_4EH 3
BROADWELL_X 06_4FH All
SKYLAKE_X 06_55H 3,4,6,7,11
BROADWELL_D 06_56H 3,4,5
SKYLAKE 06_5EH 3
ICELAKE_X 06_6AH 4,5,6
ICELAKE_D 06_6CH 1
ICELAKE_L 06_7EH 5
ATOM_TREMONT_D 06_86H All
LAKEFIELD 06_8AH 1
KABYLAKE_L 06_8EH 9 to 12
ATOM_TREMONT 06_96H 1
ATOM_TREMONT_L 06_9CH 0
KABYLAKE 06_9EH 9 to 13
COMETLAKE 06_A5H 2,3,5
COMETLAKE_L 06_A6H 0,1
ROCKETLAKE 06_A7H 1
=================== ============ =========

If a CPU is in the affected processor list, but not affected by a variant, it
is indicated by new bits in MSR IA32_ARCH_CAPABILITIES. As described in a later
section, mitigation largely remains the same for all the variants, i.e. to
clear the CPU fill buffers via VERW instruction.

New bits in MSRs
================
Newer processors and microcode update on existing affected processors added new
bits to IA32_ARCH_CAPABILITIES MSR. These bits can be used to enumerate
specific variants of Processor MMIO Stale Data vulnerabilities and mitigation
capability.

MSR IA32_ARCH_CAPABILITIES
--------------------------
Bit 13 - SBDR_SSDP_NO - When set, processor is not affected by either the
Shared Buffers Data Read (SBDR) vulnerability or the sideband stale
data propagator (SSDP).
Bit 14 - FBSDP_NO - When set, processor is not affected by the Fill Buffer
Stale Data Propagator (FBSDP).
Bit 15 - PSDP_NO - When set, processor is not affected by Primary Stale Data
Propagator (PSDP).
Bit 17 - FB_CLEAR - When set, VERW instruction will overwrite CPU fill buffer
values as part of MD_CLEAR operations. Processors that do not
enumerate MDS_NO (meaning they are affected by MDS) but that do
enumerate support for both L1D_FLUSH and MD_CLEAR implicitly enumerate
FB_CLEAR as part of their MD_CLEAR support.
Bit 18 - FB_CLEAR_CTRL - Processor supports read and write to MSR
IA32_MCU_OPT_CTRL[FB_CLEAR_DIS]. On such processors, the FB_CLEAR_DIS
bit can be set to cause the VERW instruction to not perform the
FB_CLEAR action. Not all processors that support FB_CLEAR will support
FB_CLEAR_CTRL.

MSR IA32_MCU_OPT_CTRL
---------------------
Bit 3 - FB_CLEAR_DIS - When set, VERW instruction does not perform the FB_CLEAR
action. This may be useful to reduce the performance impact of FB_CLEAR in
cases where system software deems it warranted (for example, when performance
is more critical, or the untrusted software has no MMIO access). Note that
FB_CLEAR_DIS has no impact on enumeration (for example, it does not change
FB_CLEAR or MD_CLEAR enumeration) and it may not be supported on all processors
that enumerate FB_CLEAR.

Mitigation
==========
Like MDS, all variants of Processor MMIO Stale Data vulnerabilities have the
same mitigation strategy to force the CPU to clear the affected buffers before
an attacker can extract the secrets.

This is achieved by using the otherwise unused and obsolete VERW instruction in
combination with a microcode update. The microcode clears the affected CPU
buffers when the VERW instruction is executed.

Kernel reuses the MDS function to invoke the buffer clearing:

mds_clear_cpu_buffers()

On MDS affected CPUs, the kernel already invokes CPU buffer clear on
kernel/userspace, hypervisor/guest and C-state (idle) transitions. No
additional mitigation is needed on such CPUs.

For CPUs not affected by MDS or TAA, mitigation is needed only for the attacker
with MMIO capability. Therefore, VERW is not required for kernel/userspace. For
virtualization case, VERW is only needed at VMENTER for a guest with MMIO
capability.

Mitigation points
-----------------
Return to user space
^^^^^^^^^^^^^^^^^^^^
Same mitigation as MDS when affected by MDS/TAA, otherwise no mitigation
needed.

C-State transition
^^^^^^^^^^^^^^^^^^
Control register writes by CPU during C-state transition can propagate data
from fill buffer to uncore buffers. Execute VERW before C-state transition to
clear CPU fill buffers.

Guest entry point
^^^^^^^^^^^^^^^^^
Same mitigation as MDS when processor is also affected by MDS/TAA, otherwise
execute VERW at VMENTER only for MMIO capable guests. On CPUs not affected by
MDS/TAA, guest without MMIO access cannot extract secrets using Processor MMIO
Stale Data vulnerabilities, so there is no need to execute VERW for such guests.

Mitigation control on the kernel command line
---------------------------------------------
The kernel command line allows to control the Processor MMIO Stale Data
mitigations at boot time with the option "mmio_stale_data=". The valid
arguments for this option are:

========== =================================================================
full If the CPU is vulnerable, enable mitigation; CPU buffer clearing
on exit to userspace and when entering a VM. Idle transitions are
protected as well. It does not automatically disable SMT.
full,nosmt Same as full, with SMT disabled on vulnerable CPUs. This is the
complete mitigation.
off Disables mitigation completely.
========== =================================================================

If the CPU is affected and mmio_stale_data=off is not supplied on the kernel
command line, then the kernel selects the appropriate mitigation.

Mitigation status information
-----------------------------
The Linux kernel provides a sysfs interface to enumerate the current
vulnerability status of the system: whether the system is vulnerable, and
which mitigations are active. The relevant sysfs file is:

/sys/devices/system/cpu/vulnerabilities/mmio_stale_data

The possible values in this file are:

.. list-table::

* - 'Not affected'
- The processor is not vulnerable
* - 'Vulnerable'
- The processor is vulnerable, but no mitigation enabled
* - 'Vulnerable: Clear CPU buffers attempted, no microcode'
- The processor is vulnerable, but microcode is not updated. The
mitigation is enabled on a best effort basis.
* - 'Mitigation: Clear CPU buffers'
- The processor is vulnerable and the CPU buffer clearing mitigation is
enabled.
* - 'Unknown: No mitigations'
- The processor vulnerability status is unknown because it is
out of Servicing period. Mitigation is not attempted.

Definitions:
------------

Servicing period: The process of providing functional and security updates to
Intel processors or platforms, utilizing the Intel Platform Update (IPU)
process or other similar mechanisms.

End of Servicing Updates (ESU): ESU is the date at which Intel will no
longer provide Servicing, such as through IPU or other similar update
processes. ESU dates will typically be aligned to end of quarter.

If the processor is vulnerable then the following information is appended to
the above information:

======================== ===========================================
'SMT vulnerable' SMT is enabled
'SMT disabled' SMT is disabled
'SMT Host state unknown' Kernel runs in a VM, Host SMT state unknown
======================== ===========================================

References
----------
.. [#f1] Affected Processors
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
Loading