-
Notifications
You must be signed in to change notification settings - Fork 58
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[draft] Xiaowu/fix bug(embedding bag) #1099
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3046,6 +3046,104 @@ | |
return result, offset2bag, bag_size, max_indices | ||
|
||
|
||
|
||
def test_embedding_bag_onnx(): | ||
import numpy as np | ||
# https://github.com/microsoft/onnxscript/issues/1056 | ||
weight = np.array( | ||
[[-2.7199, -1.7691, -8.5981, -5.9605, -3.7100], | ||
[ 0.3334, 3.5580, 5.4002, -6.1015, -3.9192], | ||
[ 3.2690, 7.4735, -1.8522, 6.7348, -1.4507], | ||
[ 0.9523, 8.1493, -8.3490, -5.6658, -2.2785], | ||
[-3.5082, 7.7760, -5.8336, -4.1430, -6.2878], | ||
[-8.4290, -5.2537, 7.7364, 4.0160, 4.3621], | ||
[ 0.4733, -4.6142, 1.5227, -8.4033, -6.5031], | ||
[-4.6398, 5.6784, 5.2769, -3.9915, -0.3247], | ||
[ 5.7560, 8.9472, 3.5719, 1.2158, 6.0344], | ||
[-5.2992, 1.6771, -6.9777, -6.2378, -4.6493]], | ||
dtype=np.float16) | ||
indices = np.array([4, 9, 3, 0, 3], dtype=np.int64) | ||
offsets = np.array([0, 3], dtype=np.int64) | ||
# sample=7 | ||
# weight = np.array( | ||
# [[ 1.9951, -1.1777, -3.7695, -3.3125, 8.5078], | ||
# [-3.9648, -3.2617, 4.5430, -6.7500, 1.1953], | ||
# [ 1.8193, -4.9297, 8.3438, 1.2217, 0.0352], | ||
# [-5.2812, -5.9414, -0.7295, 2.4785, -3.8496], | ||
# [ 7.2070, -0.1582, 3.8047, 1.9248, -1.8018]], | ||
# dtype=np.float16) | ||
# indices = np.array([2, 3, 1, 4, 3, 0], dtype=np.int64) | ||
# offsets = np.array([0, 3, 6], dtype=np.int64) | ||
mode = 0 # sum | ||
# include_last_offset = True | ||
per_sample_weights = np.array([2.4134, -0.1783, 7.1360, -0.7987, 2.3815], dtype=np.float16) | ||
#per_sample_weights = np.array([-2.2930, 6.2148, 3.1562, 0.0791, 6.3555], dtype=np.float16) | ||
result1, offset2bag, bag_size, max_indices = aten_embedding_bag(weight, indices, offsets, mode=mode, per_sample_weights=per_sample_weights) | ||
Check warning Code scanning / lintrunner PYLINT/W0612 Warning
Unused variable 'offset2bag' (unused-variable)
See unused-variable. To disable, use # pylint: disable=unused-variable Check warning Code scanning / lintrunner PYLINT/W0612 Warning
Unused variable 'bag_size' (unused-variable)
See unused-variable. To disable, use # pylint: disable=unused-variable Check warning Code scanning / lintrunner PYLINT/W0612 Warning
Unused variable 'max_indices' (unused-variable)
See unused-variable. To disable, use # pylint: disable=unused-variable |
||
result2, offset2bag, bag_size, max_indices = aten_embedding_bag_padding_idx(weight, indices, offsets, mode=mode, per_sample_weights=per_sample_weights) | ||
print("result from onnx-script:") | ||
print(result1) | ||
print(result2) | ||
# print(offset2bag) | ||
# print(bag_size) | ||
# print(max_indices) | ||
|
||
def test_embedding_bag_aten(): | ||
import torch as t | ||
|
||
weight = t.tensor( | ||
[[ 1.9951, -1.1777, -3.7695, -3.3125, 8.5078], | ||
[-3.9648, -3.2617, 4.5430, -6.7500, 1.1953], | ||
[ 1.8193, -4.9297, 8.3438, 1.2217, 0.0352], | ||
[-5.2812, -5.9414, -0.7295, 2.4785, -3.8496], | ||
[ 7.2070, -0.1582, 3.8047, 1.9248, -1.8018]], | ||
dtype=t.float16) | ||
|
||
indices = t.tensor([2, 3, 1, 4, 3, 0], | ||
dtype=t.int64) | ||
|
||
mode = 0 | ||
|
||
offsets = t.tensor([0, 3, 6], dtype=t.int64) | ||
mode = 0 # sum | ||
include_last_offset = True | ||
#per_sample_weights = t.tensor([-2.2930, 6.2148, 3.1562, 0.0791, 6.3555], dtype=t.float16) | ||
|
||
result, offset2bag, bag_size, max_indices = t.ops.aten.embedding_bag(weight, indices, offsets, mode=mode, include_last_offset=include_last_offset) | ||
print("result from aten:") | ||
print(result) | ||
print(offset2bag) | ||
print(bag_size) | ||
print(max_indices) | ||
|
||
def test_embedding_bag_nn_function(): | ||
import torch as t | ||
weight = t.tensor( | ||
[[-6.5664, 6.6250, 7.0664, -3.7344, 0.6152], | ||
[ 4.1484, -3.7266, 3.4805, -6.2422, -2.8047], | ||
[ 4.2734, -4.1562, -8.2344, -7.4688, 5.2734], | ||
[-1.5381, 5.9492, -4.2812, -1.5732, -8.3672], | ||
[-2.1719, 8.0469, -7.9883, -0.4219, -2.3633], | ||
[ 6.2305, 8.9844, 7.4453, 3.7891, -5.0625], | ||
[-1.5293, -8.1328, 8.6484, 1.5557, -2.3633], | ||
[-1.9951, -3.2070, 1.2920, -1.0020, -5.2812], | ||
[ 2.5312, 8.4453, 2.3281, -2.8750, -3.3828], | ||
[-4.2188, -4.2266, -2.7246, -6.8555, -7.6719]], dtype=t.float16) | ||
indices = t.tensor([4, 9, 3, 0, 3], dtype=t.int64) | ||
offsets = t.tensor([0, 3], dtype=t.int64) | ||
mode = 0 # sum | ||
per_sample_weights = t.tensor([-2.2930, 6.2148, 3.1562, 0.0791, 6.3555], dtype=t.float16) | ||
result = t.nn.functional.embedding_bag(indices, weight, offsets=offsets, mode="sum", per_sample_weights=per_sample_weights) | ||
print("result from nn.functional:") | ||
print(result) | ||
|
||
|
||
test_embedding_bag_onnx() | ||
#test_embedding_bag_aten() | ||
#test_embedding_bag_nn_function() | ||
|
||
exit(0) | ||
Check notice Code scanning / lintrunner PYLINT/R1722 Note
Consider using 'sys.exit' instead (consider-using-sys-exit)
See consider-using-sys-exit. To disable, use # pylint: disable=consider-using-sys-exit |
||
|
||
|
||
def aten_embedding_dense_backward( | ||
grad_output: TensorType, | ||
indices: TensorType, | ||
|
Check notice
Code scanning / lintrunner
PYLINT/C0415 Note