-
Notifications
You must be signed in to change notification settings - Fork 342
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Remove redundant type inference when insert data (#1739)
Signed-off-by: zhenshan.cao <[email protected]>
- Loading branch information
Showing
6 changed files
with
138 additions
and
141 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
from pymilvus import CollectionSchema, FieldSchema, Collection, connections, DataType, Partition, utility | ||
import numpy as np | ||
import random | ||
import pandas as pd | ||
connections.connect() | ||
|
||
dim = 128 | ||
collection_name = "test_array" | ||
arr_len = 100 | ||
nb = 10 | ||
if utility.has_collection(collection_name): | ||
utility.drop_collection(collection_name) | ||
# create collection | ||
pk_field = FieldSchema(name="int64", dtype=DataType.INT64, is_primary=True, description='pk') | ||
vector_field = FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim) | ||
int8_array = FieldSchema(name="int8_array", dtype=DataType.ARRAY, element_type=DataType.INT8, max_capacity=arr_len) | ||
int16_array = FieldSchema(name="int16_array", dtype=DataType.ARRAY, element_type=DataType.INT16, max_capacity=arr_len) | ||
int32_array = FieldSchema(name="int32_array", dtype=DataType.ARRAY, element_type=DataType.INT32, max_capacity=arr_len) | ||
int64_array = FieldSchema(name="int64_array", dtype=DataType.ARRAY, element_type=DataType.INT64, max_capacity=arr_len) | ||
bool_array = FieldSchema(name="bool_array", dtype=DataType.ARRAY, element_type=DataType.BOOL, max_capacity=arr_len) | ||
float_array = FieldSchema(name="float_array", dtype=DataType.ARRAY, element_type=DataType.FLOAT, max_capacity=arr_len) | ||
double_array = FieldSchema(name="double_array", dtype=DataType.ARRAY, element_type=DataType.DOUBLE, max_capacity=arr_len) | ||
string_array = FieldSchema(name="string_array", dtype=DataType.ARRAY, element_type=DataType.VARCHAR, max_capacity=arr_len, | ||
max_length=100) | ||
|
||
fields = [pk_field, vector_field, int8_array, int16_array, int32_array, int64_array, | ||
bool_array, float_array, double_array, string_array] | ||
|
||
schema = CollectionSchema(fields=fields) | ||
collection = Collection(collection_name, schema=schema) | ||
|
||
# insert data | ||
pk_value = [i for i in range(nb)] | ||
vector_value = [[random.random() for _ in range(dim)] for i in range(nb)] | ||
int8_value = [[np.int8(j) for j in range(arr_len)] for i in range(nb)] | ||
int16_value = [[np.int16(j) for j in range(arr_len)] for i in range(nb)] | ||
int32_value = [[np.int32(j) for j in range(arr_len)] for i in range(nb)] | ||
int64_value = [[np.int64(j) for j in range(arr_len)] for i in range(nb)] | ||
bool_value = [[np.bool_(j) for j in range(arr_len)] for i in range(nb)] | ||
float_value = [[np.float32(j) for j in range(arr_len)] for i in range(nb)] | ||
double_value = [[np.double(j) for j in range(arr_len)] for i in range(nb)] | ||
string_value = [[str(j) for j in range(arr_len)] for i in range(nb)] | ||
|
||
data = [pk_value, vector_value, | ||
int8_value,int16_value, int32_value, int64_value, | ||
bool_value, | ||
float_value, | ||
double_value, | ||
string_value | ||
] | ||
|
||
#collection.insert(data) | ||
|
||
data = pd.DataFrame({ | ||
'int64': pk_value, | ||
'float_vector': vector_value, | ||
"int8_array": int8_value, | ||
"int16_array": int16_value, | ||
"int32_array": int32_value, | ||
"int64_array": int64_value, | ||
"bool_array": bool_value, | ||
"float_array": float_value, | ||
"double_array": double_value, | ||
"string_array": string_value | ||
}) | ||
collection.insert(data) | ||
|
||
index = { | ||
"index_type": "IVF_FLAT", | ||
"metric_type": "L2", | ||
"params": {"nlist": 128}, | ||
} | ||
|
||
collection.create_index("float_vector", index) | ||
collection.load() | ||
|
||
res = collection.query("int64 >= 0", output_fields=["int8_array"]) | ||
for hits in res: | ||
print(hits) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters