Skip to content

Commit

Permalink
[Fix] TF - add bf16 numpy dtype conversion (#1346)
Browse files Browse the repository at this point in the history
  • Loading branch information
felixT2K authored Oct 12, 2023
1 parent 7374e89 commit 74a0b1f
Show file tree
Hide file tree
Showing 13 changed files with 58 additions and 27 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from tensorflow.keras.applications import ResNet50

from doctr.file_utils import CLASS_NAME
from doctr.models.utils import IntermediateLayerGetter, conv_sequence, load_pretrained_params
from doctr.models.utils import IntermediateLayerGetter, _bf16_to_numpy_dtype, conv_sequence, load_pretrained_params
from doctr.utils.repr import NestedObject

from ...classification import mobilenet_v3_large
Expand Down Expand Up @@ -241,7 +241,7 @@ def call(
return out

if return_model_output or target is None or return_preds:
prob_map = tf.math.sigmoid(logits)
prob_map = _bf16_to_numpy_dtype(tf.math.sigmoid(logits))

if return_model_output:
out["out_map"] = prob_map
Expand Down
5 changes: 3 additions & 2 deletions doctr/models/detection/linknet/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@

from doctr.file_utils import CLASS_NAME
from doctr.models.classification import resnet18, resnet34, resnet50
from doctr.models.utils import IntermediateLayerGetter, conv_sequence, load_pretrained_params
from doctr.models.utils import IntermediateLayerGetter, _bf16_to_numpy_dtype, conv_sequence, load_pretrained_params
from doctr.utils.repr import NestedObject

from .base import LinkNetPostProcessor, _LinkNet
Expand Down Expand Up @@ -229,7 +229,8 @@ def call(
return out

if return_model_output or target is None or return_preds:
prob_map = tf.math.sigmoid(logits)
prob_map = _bf16_to_numpy_dtype(tf.math.sigmoid(logits))

if return_model_output:
out["out_map"] = prob_map

Expand Down
2 changes: 1 addition & 1 deletion doctr/models/modules/transformer/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
Returns:
positional embeddings (batch, max_len, d_model)
"""
x = x + self.pe[:, : x.size(1)] # type: ignore
x = x + self.pe[:, : x.size(1)]
return self.dropout(x)


Expand Down
2 changes: 1 addition & 1 deletion doctr/models/recognition/crnn/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -249,7 +249,7 @@ def _crnn(
_cfg["input_shape"] = kwargs["input_shape"]

# Build the model
model = CRNN(feat_extractor, cfg=_cfg, **kwargs) # type: ignore[arg-type]
model = CRNN(feat_extractor, cfg=_cfg, **kwargs)
# Load pretrained parameters
if pretrained:
# The number of classes is not the same as the number of classes in the pretrained model =>
Expand Down
4 changes: 2 additions & 2 deletions doctr/models/recognition/crnn/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
from doctr.datasets import VOCABS

from ...classification import mobilenet_v3_large_r, mobilenet_v3_small_r, vgg16_bn_r
from ...utils.tensorflow import load_pretrained_params
from ...utils.tensorflow import _bf16_to_numpy_dtype, load_pretrained_params
from ..core import RecognitionModel, RecognitionPostProcessor

__all__ = ["CRNN", "crnn_vgg16_bn", "crnn_mobilenet_v3_small", "crnn_mobilenet_v3_large"]
Expand Down Expand Up @@ -199,7 +199,7 @@ def call(
w, h, c = transposed_feat.get_shape().as_list()[1:]
# B x W x H x C --> B x W x H * C
features_seq = tf.reshape(transposed_feat, shape=(-1, w, h * c))
logits = self.decoder(features_seq, **kwargs)
logits = _bf16_to_numpy_dtype(self.decoder(features_seq, **kwargs))

out: Dict[str, tf.Tensor] = {}
if self.exportable:
Expand Down
4 changes: 3 additions & 1 deletion doctr/models/recognition/master/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
from doctr.models.classification import magc_resnet31
from doctr.models.modules.transformer import Decoder, PositionalEncoding

from ...utils.tensorflow import load_pretrained_params
from ...utils.tensorflow import _bf16_to_numpy_dtype, load_pretrained_params
from .base import _MASTER, _MASTERPostProcessor

__all__ = ["MASTER", "master"]
Expand Down Expand Up @@ -183,6 +183,8 @@ def call(
else:
logits = self.decode(encoded, **kwargs)

logits = _bf16_to_numpy_dtype(logits)

if self.exportable:
out["logits"] = logits
return out
Expand Down
4 changes: 3 additions & 1 deletion doctr/models/recognition/parseq/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
from doctr.models.modules.transformer import MultiHeadAttention, PositionwiseFeedForward

from ...classification import vit_s
from ...utils.tensorflow import load_pretrained_params
from ...utils.tensorflow import _bf16_to_numpy_dtype, load_pretrained_params
from .base import _PARSeq, _PARSeqPostProcessor

__all__ = ["PARSeq", "parseq"]
Expand Down Expand Up @@ -390,6 +390,8 @@ def call(
else:
logits = self.decode_autoregressive(features, **kwargs)

logits = _bf16_to_numpy_dtype(logits)

out: Dict[str, tf.Tensor] = {}
if self.exportable:
out["logits"] = logits
Expand Down
6 changes: 4 additions & 2 deletions doctr/models/recognition/sar/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
from doctr.utils.repr import NestedObject

from ...classification import resnet31
from ...utils.tensorflow import load_pretrained_params
from ...utils.tensorflow import _bf16_to_numpy_dtype, load_pretrained_params
from ..core import RecognitionModel, RecognitionPostProcessor

__all__ = ["SAR", "sar_resnet31"]
Expand Down Expand Up @@ -316,7 +316,9 @@ def call(
if kwargs.get("training", False) and target is None:
raise ValueError("Need to provide labels during training for teacher forcing")

decoded_features = self.decoder(features, encoded, gt=None if target is None else gt, **kwargs)
decoded_features = _bf16_to_numpy_dtype(
self.decoder(features, encoded, gt=None if target is None else gt, **kwargs)
)

out: Dict[str, tf.Tensor] = {}
if self.exportable:
Expand Down
4 changes: 2 additions & 2 deletions doctr/models/recognition/vitstr/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
from doctr.datasets import VOCABS

from ...classification import vit_b, vit_s
from ...utils.tensorflow import load_pretrained_params
from ...utils.tensorflow import _bf16_to_numpy_dtype, load_pretrained_params
from .base import _ViTSTR, _ViTSTRPostProcessor

__all__ = ["ViTSTR", "vitstr_small", "vitstr_base"]
Expand Down Expand Up @@ -131,7 +131,7 @@ def call(
logits = tf.reshape(
self.head(features, **kwargs), (B, N, len(self.vocab) + 1)
) # (batch_size, max_length, vocab + 1)
decoded_features = logits[:, 1:] # remove cls_token
decoded_features = _bf16_to_numpy_dtype(logits[:, 1:]) # remove cls_token

out: Dict[str, tf.Tensor] = {}
if self.exportable:
Expand Down
10 changes: 5 additions & 5 deletions doctr/models/utils/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,11 @@ def _copy_tensor(x: torch.Tensor) -> torch.Tensor:
return x.clone().detach()


def _bf16_to_numpy_dtype(x: torch.Tensor) -> torch.Tensor:
# bfloat16 is not supported in .numpy(): torch/csrc/utils/tensor_numpy.cpp:aten_to_numpy_dtype
return x.float() if x.dtype == torch.bfloat16 else x


def load_pretrained_params(
model: nn.Module,
url: Optional[str] = None,
Expand Down Expand Up @@ -157,8 +162,3 @@ def export_model_to_onnx(model: nn.Module, model_name: str, dummy_input: torch.T
)
logging.info(f"Model exported to {model_name}.onnx")
return f"{model_name}.onnx"


def _bf16_to_numpy_dtype(x):
# bfloat16 is not supported in .numpy(): torch/csrc/utils/tensor_numpy.cpp:aten_to_numpy_dtype
return x.float() if x.dtype == torch.bfloat16 else x
14 changes: 13 additions & 1 deletion doctr/models/utils/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,13 +17,25 @@
logging.getLogger("tensorflow").setLevel(logging.DEBUG)


__all__ = ["load_pretrained_params", "conv_sequence", "IntermediateLayerGetter", "export_model_to_onnx", "_copy_tensor"]
__all__ = [
"load_pretrained_params",
"conv_sequence",
"IntermediateLayerGetter",
"export_model_to_onnx",
"_copy_tensor",
"_bf16_to_numpy_dtype",
]


def _copy_tensor(x: tf.Tensor) -> tf.Tensor:
return tf.identity(x)


def _bf16_to_numpy_dtype(x: tf.Tensor) -> tf.Tensor:
# Convert bfloat16 to float32 for numpy compatibility
return tf.cast(x, tf.float32) if x.dtype == tf.bfloat16 else x


def load_pretrained_params(
model: Model,
url: Optional[str] = None,
Expand Down
12 changes: 6 additions & 6 deletions tests/pytorch/test_models_utils_pt.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,12 @@ def test_copy_tensor():
assert m.device == x.device and m.dtype == x.dtype and m.shape == x.shape and torch.allclose(m, x)


def test_bf16_to_numpy_dtype():
x = torch.randn([2, 2], dtype=torch.bfloat16)
converted_x = _bf16_to_numpy_dtype(x)
assert x.dtype == torch.bfloat16 and converted_x.dtype == torch.float32 and torch.equal(converted_x, x.float())


def test_load_pretrained_params(tmpdir_factory):
model = nn.Sequential(nn.Linear(8, 8), nn.ReLU(), nn.Linear(8, 4))
# Retrieve this URL
Expand Down Expand Up @@ -58,9 +64,3 @@ def test_set_device_and_dtype():
model, batches = set_device_and_dtype(model, batches, device="cpu", dtype=torch.float16)
assert model[0].weight.dtype == torch.float16
assert batches[0].dtype == torch.float16


def test_bf16_to_numpy_dtype():
x = torch.randn([2, 2], dtype=torch.bfloat16)
converted_x = _bf16_to_numpy_dtype(x)
assert x.dtype == torch.bfloat16 and converted_x.dtype == torch.float32 and torch.equal(converted_x, x.float())
14 changes: 13 additions & 1 deletion tests/tensorflow/test_models_utils_tf.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,13 @@
from tensorflow.keras import Sequential, layers
from tensorflow.keras.applications import ResNet50

from doctr.models.utils import IntermediateLayerGetter, _copy_tensor, conv_sequence, load_pretrained_params
from doctr.models.utils import (
IntermediateLayerGetter,
_bf16_to_numpy_dtype,
_copy_tensor,
conv_sequence,
load_pretrained_params,
)


def test_copy_tensor():
Expand All @@ -14,6 +20,12 @@ def test_copy_tensor():
assert m.device == x.device and m.dtype == x.dtype and m.shape == x.shape and tf.reduce_all(tf.equal(m, x))


def test_bf16_to_numpy_dtype():
x = tf.random.uniform(shape=[8], minval=0, maxval=1, dtype=tf.bfloat16)
m = _bf16_to_numpy_dtype(x)
assert x.dtype == tf.bfloat16 and m.dtype == tf.float32 and tf.reduce_all(tf.equal(m, tf.cast(x, tf.float32)))


def test_load_pretrained_params(tmpdir_factory):
model = Sequential([layers.Dense(8, activation="relu", input_shape=(4,)), layers.Dense(4)])
# Retrieve this URL
Expand Down

0 comments on commit 74a0b1f

Please sign in to comment.