Skip to content

Commit

Permalink
Adds 3D pooling (#1526)
Browse files Browse the repository at this point in the history
  • Loading branch information
Saanidhyavats authored Nov 20, 2024
1 parent 61d7877 commit cb431df
Show file tree
Hide file tree
Showing 3 changed files with 250 additions and 1 deletion.
9 changes: 8 additions & 1 deletion python/mlx/nn/layers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,14 @@
LayerNorm,
RMSNorm,
)
from mlx.nn.layers.pooling import AvgPool1d, AvgPool2d, MaxPool1d, MaxPool2d
from mlx.nn.layers.pooling import (
AvgPool1d,
AvgPool2d,
AvgPool3d,
MaxPool1d,
MaxPool2d,
MaxPool3d,
)
from mlx.nn.layers.positional_encoding import ALiBi, RoPE, SinusoidalPositionalEncoding
from mlx.nn.layers.quantized import QuantizedEmbedding, QuantizedLinear, quantize
from mlx.nn.layers.recurrent import GRU, LSTM, RNN
Expand Down
125 changes: 125 additions & 0 deletions python/mlx/nn/layers/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,6 +158,30 @@ def __init__(
super().__init__(pooling_function, kernel_size, stride, padding, padding_value)


class _Pool3d(_Pool):
def __init__(
self,
pooling_function,
padding_value,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Optional[Union[int, Tuple[int, int, int]]] = None,
padding: Optional[Union[int, Tuple[int, int, int]]] = 0,
):
class_name = type(self).__name__
msg = "[{}] '{}' must be an integer or a tuple containing 3 integers"
kernel_size = _value_or_list(
kernel_size, 3, msg.format(class_name, "kernel_size")
)
if stride is not None:
stride = _value_or_list(stride, 3, msg.format(class_name, "stride"))
else:
stride = kernel_size
padding = _value_or_list(padding, 3, msg.format(class_name, "padding"))
padding = [(p, p) for p in padding]

super().__init__(pooling_function, kernel_size, stride, padding, padding_value)


class MaxPool1d(_Pool1d):
r"""Applies 1-dimensional max pooling.
Expand Down Expand Up @@ -332,3 +356,104 @@ def __init__(
padding: Optional[Union[int, Tuple[int, int]]] = 0,
):
super().__init__(mx.mean, 0, kernel_size, stride, padding)


class MaxPool3d(_Pool3d):
"""
Assuming an input of shape :math:`(N, D, H, W, C)` and ``kernel_size`` is
:math:`(k_D, k_H, k_W)`, the output is a tensor of shape :math:`(N, D_{out},
H_{out}, W_{out}, C)`, given by:
.. math::
\begin{aligned}
\text{out}(N_i, d, h, w, C_j) = & \max_{l=0, \ldots, k_D-1} \max_{m=0, \ldots, k_H-1} \max_{n=0, \ldots, k_W-1} \\
& \text{input}(N_i, \text{stride[0]} \times d + l,
\text{stride[1]} \times h + m,
\text{stride[2]} \times w + n, C_j),
\end{aligned}
where :math:`D_{out} = \left\lfloor\frac{D + 2 * \text{padding[0]} - \text{kernel\_size[0]}}{\text{stride[0]}}\right\rfloor + 1`,
:math:`H_{out} = \left\lfloor\frac{H + 2 * \text{padding[1]} - \text{kernel\_size[1]}}{\text{stride[1]}}\right\rfloor + 1`,
:math:`W_{out} = \left\lfloor\frac{W + 2 * \text{padding[2]} - \text{kernel\_size[2]}}{\text{stride[2]}}\right\rfloor + 1`.
The parameters ``kernel_size``, ``stride``, ``padding``, can either be:
- a single ``int`` -- in which case the same value is used for the depth,
height and width axis;
- a ``tuple`` of three ``int`` s -- in which case, the first ``int`` is used
for the depth axis, the second ``int`` for the height axis, and the third
``int`` for the width axis.
Args:
kernel_size (int or tuple(int, int, int)): The size of the pooling window.
stride (int or tuple(int, int, int), optional): The stride of the pooling
window. Default: ``kernel_size``.
padding (int or tuple(int, int, int), optional): How much negative infinity
padding to apply to the input. The padding is applied on both sides
of the depth, height and width axis. Default: ``0``.
Examples:
>>> import mlx.core as mx
>>> import mlx.nn.layers as nn
>>> x = mx.random.normal(shape=(8, 16, 32, 32, 4))
>>> pool = nn.MaxPool3d(kernel_size=2, stride=2)
>>> pool(x)
"""

def __init__(
self,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Optional[Union[int, Tuple[int, int, int]]] = None,
padding: Optional[Union[int, Tuple[int, int, int]]] = 0,
):
super().__init__(mx.max, -float("inf"), kernel_size, stride, padding)


class AvgPool3d(_Pool3d):
"""
Assuming an input of shape :math:`(N, D, H, W, C)` and ``kernel_size`` is
:math:`(k_D, k_H, k_W)`, the output is a tensor of shape :math:`(N, D_{out},
H_{out}, W_{out}, C)`, given by:
.. math::
\begin{aligned}
\text{out}(N_i, d, h, w, C_j) = & \frac{1}{k_D k_H k_W} \sum_{l=0, \ldots, k_D-1} \sum_{m=0, \ldots, k_H-1} \sum_{n=0, \ldots, k_W-1} \\
& \text{input}(N_i, \text{stride[0]} \times d + l,
\text{stride[1]} \times h + m,
\text{stride[2]} \times w + n, C_j),
\end{aligned}
where :math:`D_{out} = \left\lfloor\frac{D + 2 * \text{padding[0]} - \text{kernel\_size[0]}}{\text{stride[0]}}\right\rfloor + 1`,
:math:`H_{out} = \left\lfloor\frac{H + 2 * \text{padding[1]} - \text{kernel\_size[1]}}{\text{stride[1]}}\right\rfloor + 1`,
:math:`W_{out} = \left\lfloor\frac{W + 2 * \text{padding[2]} - \text{kernel\_size[2]}}{\text{stride[2]}}\right\rfloor + 1`.
The parameters ``kernel_size``, ``stride``, ``padding``, can either be:
- a single ``int`` -- in which case the same value is used for the depth,
height and width axis;
- a ``tuple`` of three ``int`` s -- in which case, the first ``int`` is used
for the depth axis, the second ``int`` for the height axis, and the third
``int`` for the width axis.
Args:
kernel_size (int or tuple(int, int, int)): The size of the pooling window.
stride (int or tuple(int, int, int), optional): The stride of the pooling
window. Default: ``kernel_size``.
padding (int or tuple(int, int, int), optional): How much zero
padding to apply to the input. The padding is applied on both sides
of the depth, height and width axis. Default: ``0``.
Examples:
>>> import mlx.core as mx
>>> import mlx.nn.layers as nn
>>> x = mx.random.normal(shape=(8, 16, 32, 32, 4))
>>> pool = nn.AvgPool3d(kernel_size=2, stride=2)
>>> pool(x)
"""
def __init__(
self,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Optional[Union[int, Tuple[int, int, int]]] = None,
padding: Optional[Union[int, Tuple[int, int, int]]] = 0,
):
super().__init__(mx.mean, 0, kernel_size, stride, padding)
117 changes: 117 additions & 0 deletions python/tests/test_nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -1589,6 +1589,123 @@ def test_pooling(self):
str(nn.AvgPool2d(kernel_size=(1, 2), stride=2, padding=(1, 2))),
"AvgPool2d(kernel_size=(1, 2), stride=(2, 2), padding=(1, 2))",
)
# Test 3d pooling
x = mx.array(
[
[
[
[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
[[9, 10, 11], [12, 13, 14], [15, 16, 17]],
[[18, 19, 20], [21, 22, 23], [24, 25, 26]],
],
[
[[27, 28, 29], [30, 31, 32], [33, 34, 35]],
[[36, 37, 38], [39, 40, 41], [42, 43, 44]],
[[45, 46, 47], [48, 49, 50], [51, 52, 53]],
],
]
]
)
expected_max_pool_output_no_padding_stride_1 = [
[[[[39, 40, 41], [42, 43, 44]], [[48, 49, 50], [51, 52, 53]]]]
]

expected_max_pool_output_no_padding_stride_2 = [[[[[39, 40, 41]]]]]
expected_max_pool_output_padding_1 = [
[
[[[0, 1, 2], [6, 7, 8]], [[18, 19, 20], [24, 25, 26]]],
[[[27, 28, 29], [33, 34, 35]], [[45, 46, 47], [51, 52, 53]]],
]
]
expected_irregular_max_pool_output = [
[
[[[9, 10, 11], [12, 13, 14], [15, 16, 17]]],
[[[36, 37, 38], [39, 40, 41], [42, 43, 44]]],
]
]

self.assertTrue(
np.array_equal(
nn.MaxPool3d(kernel_size=2, stride=1, padding=0)(x),
expected_max_pool_output_no_padding_stride_1,
)
)
self.assertTrue(
np.array_equal(
nn.MaxPool3d(kernel_size=2, stride=2, padding=0)(x),
expected_max_pool_output_no_padding_stride_2,
)
)
self.assertTrue(
np.array_equal(
nn.MaxPool3d(kernel_size=2, stride=2, padding=1)(x),
expected_max_pool_output_padding_1,
)
)
self.assertTrue(
np.array_equal(
nn.MaxPool3d(kernel_size=(1, 2, 1), stride=(1, 2, 1))(x),
expected_irregular_max_pool_output,
)
)
self.assertEqual(
str(nn.MaxPool3d(kernel_size=3, stride=3, padding=2)),
"MaxPool3d(kernel_size=(3, 3, 3), stride=(3, 3, 3), padding=(2, 2, 2))",
)

expected_avg_pool_output_no_padding_stride_1 = [[[[[19.5, 20.5, 21.5],
[22.5, 23.5, 24.5]],
[[28.5, 29.5, 30.5],
[31.5, 32.5, 33.5]]]]
]

expected_avg_pool_output_no_padding_stride_2 = [[[[[19.5, 20.5, 21.5]]]]]
expected_avg_pool_output_padding_1 = [
[[[[0, 0.125, 0.25],
[1.125, 1.375, 1.625]],
[[3.375, 3.625, 3.875],
[9, 9.5, 10]]],
[[[3.375, 3.5, 3.625],
[7.875, 8.125, 8.375]],
[[10.125, 10.375, 10.625],
[22.5, 23, 23.5]]]]
]
expected_irregular_avg_pool_output = [[[[[4.5, 5.5, 6.5],
[7.5, 8.5, 9.5],
[10.5, 11.5, 12.5]]],
[[[31.5, 32.5, 33.5],
[34.5, 35.5, 36.5],
[37.5, 38.5, 39.5]]]]
]

self.assertTrue(
np.array_equal(
nn.AvgPool3d(kernel_size=2, stride=1, padding=0)(x),
expected_avg_pool_output_no_padding_stride_1,
)
)
self.assertTrue(
np.array_equal(
nn.AvgPool3d(kernel_size=2, stride=2, padding=0)(x),
expected_avg_pool_output_no_padding_stride_2,
)
)
self.assertTrue(
np.array_equal(
nn.AvgPool3d(kernel_size=2, stride=2, padding=1)(x),
expected_avg_pool_output_padding_1,
)
)
self.assertTrue(
np.array_equal(
nn.AvgPool3d(kernel_size=(1, 2, 1), stride=(1, 2, 1))(x),
expected_irregular_avg_pool_output,
)
)
self.assertEqual(
str(nn.AvgPool3d(kernel_size=3, stride=3, padding=2)),
"AvgPool3d(kernel_size=(3, 3, 3), stride=(3, 3, 3), padding=(2, 2, 2))",
)

def test_set_dtype(self):
def assert_dtype(layer, dtype):
Expand Down

0 comments on commit cb431df

Please sign in to comment.