Skip to content

Commit

Permalink
Merge pull request #45 from verivital/master
Browse files Browse the repository at this point in the history
FMAS submission
  • Loading branch information
mldiego authored Feb 6, 2024
2 parents f21c474 + 3c18a62 commit 3c5f509
Show file tree
Hide file tree
Showing 45 changed files with 444 additions and 3 deletions.
2 changes: 1 addition & 1 deletion code/nnv/engine/set/ImageStar.m
Original file line number Diff line number Diff line change
Expand Up @@ -859,7 +859,7 @@

end

% get lowew bound and upper bound images of an imagestar
% get lower bound and upper bound images of an imagestar
function [image_lb, image_ub] = getRanges(varargin)
% @image_lb: lower bound image
% @image_ub: upper bound image
Expand Down
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
function [robust,T,PR,T_avg,T_sum] = adversarialReachability(varargin)
%% the function adversarialReachability takes the following inputs
% nnvnet : NNV supported neural network model
% dataset : dataset prepared by the 'createSOCDataset' function
% percent : the input perturbations as percentage for different noises
% noiseType : type of Noise
% randFeature : the particular feature we want to introduce the noise in

% and provides the following outputs as a result of approx-star
% reachability analysis
% robust : local robustness for each of the input audio sequence
% PR : the percentage sample robustness value
% T_avg : the avg time for the reachability calculatiom
% T_sum : total time for the reachability calculation

reachOptions.reachMethod = 'exact-star';
switch nargin
case 7
nnvnet = varargin(1);
dataset = varargin(2);
index = varargin(3);
percent = varargin(4);
noiseType = varargin(5);
classIndex = varargin(6);
randFeature = varargin(7);
case 6
nnvnet = varargin(1);
dataset = varargin(2);
index = varargin(3);
percent = varargin(4);
noiseType = varargin(5);
classIndex = varargin(6);
otherwise
error('Invalid number of inputs, should be 6 or 7');
end
percent = percent{1,1};
nnvnet = nnvnet{1,1};
randFeature = index{1,1};
input = dataset{1,1};
classIndex = classIndex{1,1};
for j = 1: length(input)
ip = input(:,:,j)';
lb = ip;
ub = ip;
if strcmp(noiseType{1,1},'SFSI')
XmuNorm = mean(ip(randFeature,:));
lb(randFeature,end) = lb(randFeature, end)-XmuNorm*percent;
ub(randFeature,end) = ub(randFeature, end)+XmuNorm*percent;
elseif strcmp(noiseType{1,1},'SFAI')
XmuNorm = mean(ip(randFeature,:));
lb(randFeature,:) = lb(randFeature,:)-XmuNorm*percent;
ub(randFeature,:) = ub(randFeature,:)+XmuNorm*percent;
elseif strcmp(noiseType{1,1},'MFSI')
XmuNorm = mean(ip(:,:)')';
lb(:,end) = lb(:, end)-XmuNorm*percent;
ub(:,end) = ub(:, end)+XmuNorm*percent;
elseif strcmp(noiseType{1,1},'MFAI')
XmuNorm = mean(ip(:,:)')';
lb = lb-XmuNorm*percent;
ub = ub+XmuNorm*percent;
end
IM = ImageStar(lb,ub);
start_time = tic;
R(j) = nnvnet.reachSequence(IM, reachOptions);
T(j) = toc(start_time);
robust(j) = nnvnet.checkRobust(R(j),classIndex);
end
PR = sum(robust==1)/100;
T_avg = mean(T);
T_sum = sum(T);
end
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
nnvnet = matlab2nnv(net);
load('data.mat',wNoiseTest_ex);
load('data.mat',bNoiseTest_ex);
load('data.mat',pNoiseTest_ex);

for i = 1: length(percent)
for j = 1:1
[robust_SFSI{i,j},T_SFSI{i,j},PR_SFSI{i,j},T_avg_SFSI{i,j},T_sum_SFSI{i,j}] = adversarialReachability(nnvnet,wNoiseTest_ex,1,percent(i),"SFSI",j);
[robust_SFAI{i,j},T_SFAI{i,j},PR_SFAI{i,j},T_avg_SFAI{i,j},T_sum_SFAI{i,j}] = adversarialReachability(nnvnet,wNoiseTest_ex,1,percent(i),"SFAI",j);
[robust_MFSI{i,j},T_MFSI{i,j},PR_MFSI{i,j},T_avg_MFSI{i,j},T_sum_MFSI{i,j}] = adversarialReachability(nnvnet,wNoiseTest_ex,1,percent(i),"MFSI",j);
[robust_MFAI{i,j},T_MFAI{i,j},PR_MFAI{i,j},T_avg_MFAI{i,j},T_sum_MFAI{i,j}] = adversarialReachability(nnvnet,wNoiseTest_ex,1,percent(i),"MFAI",j);
end
end
for i = 1: length(percent)
for j = 2:2
[robust_SFSI{i,j},T_SFSI{i,j},PR_SFSI{i,j},T_avg_SFSI{i,j},T_sum_SFSI{i,j}] = adversarialReachability(nnvnet,bNoiseTest_ex,1,percent(i),"SFSI",j);
[robust_SFAI{i,j},T_SFAI{i,j},PR_SFAI{i,j},T_avg_SFAI{i,j},T_sum_SFAI{i,j}] = adversarialReachability(nnvnet,bNoiseTest_ex,1,percent(i),"SFAI",j);
[robust_MFSI{i,j},T_MFSI{i,j},PR_MFSI{i,j},T_avg_MFSI{i,j},T_sum_MFSI{i,j}] = adversarialReachability(nnvnet,bNoiseTest_ex,1,percent(i),"MFSI",j);
[robust_MFAI{i,j},T_MFAI{i,j},PR_MFAI{i,j},T_avg_MFAI{i,j},T_sum_MFAI{i,j}] = adversarialReachability(nnvnet,bNoiseTest_ex,1,percent(i),"MFAI",j);
end
end
for i = 1: length(percent)
for j = 3:3
[robust_SFSI{i,j},T_SFSI{i,j},PR_SFSI{i,j},T_avg_SFSI{i,j},T_sum_SFSI{i,j}] = adversarialReachability(nnvnet,pNoiseTest_ex,1,percent(i),"SFSI",j);
[robust_SFAI{i,j},T_SFAI{i,j},PR_SFAI{i,j},T_avg_SFAI{i,j},T_sum_SFAI{i,j}] = adversarialReachability(nnvnet,pNoiseTest_ex,1,percent(i),"SFAI",j);
[robust_MFSI{i,j},T_MFSI{i,j},PR_MFSI{i,j},T_avg_MFSI{i,j},T_sum_MFSI{i,j}] = adversarialReachability(nnvnet,pNoiseTest_ex,1,percent(i),"MFSI",j);
[robust_MFAI{i,j},T_MFAI{i,j},PR_MFAI{i,j},T_avg_MFAI{i,j},T_sum_MFAI{i,j}] = adversarialReachability(nnvnet,pNoiseTest_ex,1,percent(i),"MFAI",j);
end
end

GPR_MFAI = sum(cell2mat(PR_MFAI)')/3;
GPR_MFSI = sum(cell2mat(PR_MFSI)')/3;
GPR_SFSI = sum(cell2mat(PR_SFSI)')/3;
GPR_SFAI = sum(cell2mat(PR_SFAI)')/3;
GTavg_MFAI = sum(cell2mat(T_avg_MFAI)')/3;
GTavg_MFSI = sum(cell2mat(T_avg_MFSI)')/3;
GTavg_SFSI = sum(cell2mat(T_avg_SFSI)')/3;
GTavg_SFAI = sum(cell2mat(T_avg_SFAI)')/3;
GTsum_MFAI = sum(cell2mat(T_sum_MFAI)')/3;
GTsum_MFSI = sum(cell2mat(T_sum_MFSI)')/3;
GTsum_SFSI = sum(cell2mat(T_sum_SFSI)')/3;
GTsum_SFAI = sum(cell2mat(T_sum_SFAI)')/3;
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
%% this file generates fig. 5 captioned
% "Percentage Robustness and Runtime plots w.r.t increasing noise"

load audioNoiseClassifier_results.mat
figure;
perturbations = percent;
subplot(1,2,1);
plot(100*[0 perturbations],100*[1, GPR_MFAI]);
hold on
plot(100*[0 perturbations],100*[1, GPR_MFSI]);
hold on
plot(100*[0 perturbations],100*[1, GPR_SFAI]);
hold on
plot(100*[0 perturbations],100*[1, GPR_SFSI]);
xlabel('Pecentage Noise (%) ');
ylabel('Percentage Robustness (%)')
set(gca, 'FontSize', 22);
legend('MFAI','MFSI','SFAI','SFSI');

subplot(1,2,2);
plot(100*[0 perturbations],100*[0,GTsum_MFAI]);
hold on
plot(100*[0 perturbations],100*[0,GTsum_MFSI]);
hold on
plot(100*[0 perturbations],100*[0,GTsum_SFAI]);
hold on
plot(100*[0 perturbations],100*[0,GTsum_SFSI]);
xlabel('Pecentage Noise (%) ');
ylabel('Total Runtime (sec)')
set(gca, 'FontSize', 22);
legend('MFAI','MFSI','SFAI','SFSI');
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
function [robust,T] = adversarialReachability(varargin)
%% the function adversarialReachability takes the following inputs
% nnvnet : NNV supported neural network model
% dataset : dataset prepared by the 'createSOCDataset' function
% percent : the input perturbations as percentage for different noises
% noiseType : type of Noise
% randFeature : the particular feature we want to introduce the noise in

% and provides the following outputs as a result of approx-star
% reachability analysis
% robust : local robustness for each of the input audio sequence
% PR : the percentage sample robustness value
% T_avg : the avg time for the reachability calculatiom
% T_sum : total time for the reachability calculation

reachOptions.reachMethod = 'approx-star';
switch nargin
case 7
nnvnet = varargin(1);
input = varargin(2);
index = varargin(3);
percent = varargin(4);
noiseType = varargin(5);
classIndex = varargin(6);
randFeature = varargin(7);
case 6
nnvnet = varargin(1);
input = varargin(2);
index = varargin(3);
percent = varargin(4);
noiseType = varargin(5);
classIndex = varargin(6);
otherwise
error('Invalid number of inputs, should be 6 or 7');
end
percent = percent{1,1};
nnvnet = nnvnet{1,1};
randFeature = index{1,1};
ip = input{1,1};
classIndex = classIndex{1,1};
lb = ip;
ub = ip;
if strcmp(noiseType{1,1},'SFSI')
XmuNorm = mean(ip(randFeature,:));
lb(randFeature,end) = lb(randFeature, end)-XmuNorm*percent;
ub(randFeature,end) = ub(randFeature, end)+XmuNorm*percent;
elseif strcmp(noiseType{1,1},'SFAI')
XmuNorm = mean(ip(randFeature,:));
lb(randFeature,:) = lb(randFeature,:)-XmuNorm*percent;
ub(randFeature,:) = ub(randFeature,:)+XmuNorm*percent;
elseif strcmp(noiseType{1,1},'MFSI')
XmuNorm = mean(ip(:,:)')';
lb(:,end) = lb(:, end)-XmuNorm*percent;
ub(:,end) = ub(:, end)+XmuNorm*percent;
elseif strcmp(noiseType{1,1},'MFAI')
XmuNorm = mean(ip(:,:)')';
lb = lb-XmuNorm*percent;
ub = ub+XmuNorm*percent;
end
IM = ImageStar(lb,ub);
start_time = tic;
R = nnvnet.reachSequence(IM, reachOptions);
T = toc(start_time);
robust = nnvnet.checkRobust(R,classIndex);
end
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
percent = [0.01, 0.02, 0.03, 0.04, 0.05];
nnvnet = matlab2nnv(net);
YTest = double(YTest_reach);
for j = 1: length(percent)
for i = 1:length(XTest_reach)
i
input = XTest_reach{i,1};
classIndex = YTest(i);
[robust_SFSI(j,i),T_SFSI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"SFSI",classIndex);
[robust_SFAI(j,i),T_SFAI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"SFAI",classIndex);
[robust_MFSI(j,i),T_MFSI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"MFSI",classIndex);
[robust_MFAI(j,i),T_MFAI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"MFAI",classIndex);
end
PR_SFSI(1,j) = sum(robust_SFSI(j,:)==1)/length(XTest_reach);
T_sum_SFSI(1,j) = sum(T_SFSI(j,:));
PR_SFAI(1,j) = sum(robust_SFAI(j,:)==1)/length(XTest_reach);
T_sum_SFAI(1,j) = sum(T_SFAI(j,:));
PR_MFSI(1,j) = sum(robust_MFSI(j,:)==1)/length(XTest_reach);
T_sum_MFSI(1,j) = sum(T_MFSI(j,:));
PR_MFAI(1,j) = sum(robust_MFAI(j,:)==1)/length(XTest_correct);
T_sum_MFAI(1,j) = sum(T_MFAI(j,:));
end
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
percent = [0.5, 0.6, 0.7, 0.8, 0.9];
nnvnet = matlab2nnv(net);
YTest = double(YTest_Correct);
for j = 1: length(percent)
for i = 1:length(XTest_Correct)
i
input = XTest_Correct{i,1};
classIndex = YTest(i);
[robust_SFSI(j,i),T_SFSI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"SFSI",classIndex);
[robust_SFAI(j,i),T_SFAI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"SFAI",classIndex);
[robust_MFSI(j,i),T_MFSI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"MFSI",classIndex);
[robust_MFAI(j,i),T_MFAI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"MFAI",classIndex);
end
PR_SFSI(1,j) = sum(robust_SFSI(j,:)==1)/length(XTest_Correct);
T_sum_SFSI(1,j) = sum(T_SFSI(j,:));
PR_SFAI(1,j) = sum(robust_SFAI(j,:)==1)/length(XTest_Correct);
T_sum_SFAI(1,j) = sum(T_SFAI(j,:));
PR_MFSI(1,j) = sum(robust_MFSI(j,:)==1)/length(XTest_Correct);
T_sum_MFSI(1,j) = sum(T_MFSI(j,:));
PR_MFAI(1,j) = sum(robust_MFAI(j,:)==1)/length(XTest_Correct);
T_sum_MFAI(1,j) = sum(T_MFAI(j,:));
end
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
%% this file generates fig. 5 captioned
% "Percentage Robustness and Runtime plots w.r.t increasing noise"

load japanesevowel_cnnlstmClassifier_results2.mat
figure;
perturbations = percent;
subplot(1,2,1);
plot(100*[0 perturbations],100*[1, PR_MFAI]);
hold on
plot(100*[0 perturbations],100*[1, PR_MFSI]);
hold on
plot(100*[0 perturbations],100*[1, PR_SFAI]);
hold on
plot(100*[0 perturbations],100*[1, PR_SFSI]);
xlabel('Pecentage Noise (%) ');
ylabel('Percentage Robustness (%)')
set(gca, 'FontSize', 22);
legend('MFAI','MFSI','SFAI','SFSI');

subplot(1,2,2);
plot(100*[0 perturbations],100*[0,T_sum_MFAI]);
hold on
plot(100*[0 perturbations],100*[0,T_sum_MFSI]);
hold on
plot(100*[0 perturbations],100*[0,T_sum_SFAI]);
hold on
plot(100*[0 perturbations],100*[0,T_sum_SFSI]);
xlabel('Pecentage Noise (%) ');
ylabel('Total Runtime (sec)')
set(gca, 'FontSize', 22);
legend('MFAI','MFSI','SFAI','SFSI');
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
function [robust,T] = adversarialReachability(varargin)
%% the function adversarialReachability takes the following inputs
% nnvnet : NNV supported neural network model
% dataset : dataset prepared by the 'createSOCDataset' function
% percent : the input perturbations as percentage for different noises
% noiseType : type of Noise
% randFeature : the particular feature we want to introduce the noise in

% and provides the following outputs as a result of approx-star
% reachability analysis
% robust : local robustness for each of the input audio sequence
% PR : the percentage sample robustness value
% T_avg : the avg time for the reachability calculatiom
% T_sum : total time for the reachability calculation

reachOptions.reachMethod = 'exact-star';
switch nargin
case 7
nnvnet = varargin(1);
input = varargin(2);
index = varargin(3);
percent = varargin(4);
noiseType = varargin(5);
classIndex = varargin(6);
randFeature = varargin(7);
case 6
nnvnet = varargin(1);
input = varargin(2);
index = varargin(3);
percent = varargin(4);
noiseType = varargin(5);
classIndex = varargin(6);
otherwise
error('Invalid number of inputs, should be 6 or 7');
end
percent = percent{1,1};
nnvnet = nnvnet{1,1};
randFeature = index{1,1};
ip = input{1,1};
classIndex = classIndex{1,1};
lb = ip;
ub = ip;
if strcmp(noiseType{1,1},'SFSI')
XmuNorm = mean(ip(randFeature,:));
lb(randFeature,end) = lb(randFeature, end)-XmuNorm*percent;
ub(randFeature,end) = ub(randFeature, end)+XmuNorm*percent;
elseif strcmp(noiseType{1,1},'SFAI')
XmuNorm = mean(ip(randFeature,:));
lb(randFeature,:) = lb(randFeature,:)-XmuNorm*percent;
ub(randFeature,:) = ub(randFeature,:)+XmuNorm*percent;
elseif strcmp(noiseType{1,1},'MFSI')
XmuNorm = mean(ip(:,:)')';
lb(:,end) = lb(:, end)-XmuNorm*percent;
ub(:,end) = ub(:, end)+XmuNorm*percent;
elseif strcmp(noiseType{1,1},'MFAI')
XmuNorm = mean(ip(:,:)')';
lb = lb-XmuNorm*percent;
ub = ub+XmuNorm*percent;
end
IM = ImageStar(lb,ub);
start_time = tic;
R = nnvnet.reachSequence(IM, reachOptions);
T = toc(start_time);
robust = nnvnet.checkRobust(R,classIndex);
end
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
percent = [0.5, 0.6, 0.7, 0.8, 0.9];
nnvnet = matlab2nnv(net);
YTest = double(YTest_correct);
for j = 1: length(percent)
for i = 1:length(XTest_correct)
input = XTest_correct{i,1};
classIndex = YTest(i);
[robust_SFSI(j,i),T_SFSI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"SFSI",classIndex);
[robust_SFAI(j,i),T_SFAI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"SFAI",classIndex);
[robust_MFSI(j,i),T_MFSI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"MFSI",classIndex);
[robust_MFAI(j,i),T_MFAI(j,i)] = adversarialReachability(nnvnet,input,1,percent(j),"MFAI",classIndex);
end
PR_SFSI(1,j) = sum(robust_SFSI(j,:)==1)/length(XTest_correct);
T_sum_SFSI(1,j) = sum(T_SFSI(j,:));
PR_SFAI(1,j) = sum(robust_SFAI(j,:)==1)/length(XTest_correct);
T_sum_SFAI(1,j) = sum(T_SFAI(j,:));
PR_MFSI(1,j) = sum(robust_MFSI(j,:)==1)/length(XTest_correct);
T_sum_MFSI(1,j) = sum(T_MFSI(j,:));
PR_MFAI(1,j) = sum(robust_MFAI(j,:)==1)/length(XTest_correct);
T_sum_MFAI(1,j) = sum(T_MFAI(j,:));
end
Binary file not shown.
Loading

0 comments on commit 3c5f509

Please sign in to comment.