Skip to content

Commit

Permalink
resolve merge conflict in R\piplines.R
Browse files Browse the repository at this point in the history
  • Loading branch information
markusgoeswein committed Jan 31, 2025
2 parents 35745f0 + 5cc5c42 commit e2a6c21
Show file tree
Hide file tree
Showing 189 changed files with 3,810 additions and 4,073 deletions.
1 change: 1 addition & 0 deletions .Rbuildignore
Original file line number Diff line number Diff line change
Expand Up @@ -23,3 +23,4 @@ README.html
^\.vscode$
^\.lintr$
^\.pre-commit-config\.yaml$
^pkgdown/_pkgdown\.yml$
4 changes: 2 additions & 2 deletions .github/workflows/pkgdown.yml
Original file line number Diff line number Diff line change
Expand Up @@ -42,9 +42,9 @@ jobs:
run: pkgdown::build_site_github_pages(new_process = FALSE, install = FALSE)
shell: Rscript {0}

- name: Deploy
- name: Deploy to GitHub pages 🚀
if: github.event_name != 'pull_request'
uses: JamesIves/github-pages-deploy-action@v4.6.4
uses: JamesIves/github-pages-deploy-action@v4.7.2
with:
clean: false
branch: gh-pages
Expand Down
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -104,4 +104,5 @@ src/*.so
src/*.dll
CRAN-RELEASE
.vscode
check/*
check/*
docs
57 changes: 0 additions & 57 deletions .pre-commit-config.yaml

This file was deleted.

96 changes: 33 additions & 63 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,49 +1,25 @@
Package: mlr3proba
Title: Probabilistic Supervised Learning for 'mlr3'
Version: 0.6.8
Authors@R:
c(person(given = "Raphael",
family = "Sonabend",
role = "aut",
email = "[email protected]",
comment = c(ORCID = "0000-0001-9225-4654")),
person(given = "Franz",
family = "Kiraly",
role = "aut",
email = "[email protected]"),
person(given = "Michel",
family = "Lang",
role = "aut",
email = "[email protected]",
comment = c(ORCID = "0000-0001-9754-0393")),
person(given = "Nurul Ain",
family = "Toha",
role = "ctb",
email = "[email protected]"),
person(given = "Andreas",
family = "Bender",
role = "ctb",
email = "[email protected]",
comment = c(ORCID = "0000-0001-5628-8611")),
person(given = "John",
family = "Zobolas",
role = c("cre", "aut"),
email = "[email protected]",
comment = c(ORCID = "0000-0002-3609-8674")),
person(given = "Lukas",
family = "Burk",
email = "[email protected]",
role = "ctb",
comment = c(ORCID = "0000-0001-7528-3795")),
person(given = "Philip",
family = "Studener",
role = "aut",
email = "[email protected]"),
person(given = "Maximilian",
family = "Muecke",
email = "[email protected]",
role = "ctb",
comment = c(ORCID = "0009-0000-9432-9795")))
Version: 0.7.4
Authors@R: c(
person("Raphael", "Sonabend", , "[email protected]", role = "aut",
comment = c(ORCID = "0000-0001-9225-4654")),
person("Franz", "Kiraly", , "[email protected]", role = "aut"),
person("Michel", "Lang", , "[email protected]", role = "aut",
comment = c(ORCID = "0000-0001-9754-0393")),
person("Nurul Ain", "Toha", , "[email protected]", role = "ctb"),
person("Andreas", "Bender", , "[email protected]", role = "ctb",
comment = c(ORCID = "0000-0001-5628-8611")),
person("John", "Zobolas", , "[email protected]", role = c("cre", "aut"),
comment = c(ORCID = "0000-0002-3609-8674")),
person("Lukas", "Burk", , "[email protected]", role = "ctb",
comment = c(ORCID = "0000-0001-7528-3795")),
person("Philip", "Studener", , "[email protected]", role = "aut"),
person("Maximilian", "Muecke", , "[email protected]", role = "ctb",
comment = c(ORCID = "0009-0000-9432-9795")),
person("Lee Xingzhuo", "Li", , "[email protected]", role = "ctb",
comment = c(ORCID = "0000-0001-5259-5198"))
)
Description: Provides extensions for probabilistic supervised learning for
'mlr3'. This includes extending the regression task to probabilistic
and interval regression, adding a survival task, and other specialized
Expand All @@ -60,38 +36,37 @@ Imports:
distr6 (>= 1.8.4),
ggplot2,
mlr3misc (>= 0.7.0),
mlr3viz,
mlr3pipelines (>= 0.7.0),
paradox (>= 1.0.0),
R6,
Rcpp (>= 1.0.4),
survival
Suggests:
bujar,
abind,
coxed,
GGally,
knitr,
lgr,
mlr3pipelines (>= 0.3.4),
lifecycle,
mlr3learners,
mlr3viz,
pammtools,
param6 (>= 0.2.4),
polspline,
pracma,
rpart,
set6 (>= 0.2.6),
simsurv,
survAUC,
testthat (>= 3.0.0),
vdiffr,
abind,
Ecdat,
coxed,
mlr3learners,
pammtools
testthat (>= 3.0.0)
LinkingTo:
Rcpp
Remotes:
xoopR/distr6,
xoopR/param6,
xoopR/set6
Config/testthat/edition: 3
ByteCompile: true
Config/testthat/edition: 3
Encoding: UTF-8
LazyData: true
NeedsCompilation: no
Expand All @@ -118,6 +93,7 @@ Collate:
'MeasureSurvDCalibration.R'
'MeasureSurvGraf.R'
'MeasureSurvHungAUC.R'
'MeasureSurvICI.R'
'MeasureSurvIntLogloss.R'
'MeasureSurvLogloss.R'
'MeasureSurvMAE.R'
Expand All @@ -138,17 +114,12 @@ Collate:
'PipeOpCrankCompositor.R'
'PipeOpDistrCompositor.R'
'PipeOpPredClassifSurvDiscTime.R'
'PipeOpTransformer.R'
'PipeOpPredTransformer.R'
'PipeOpPredRegrSurv.R'
'PipeOpPredSurvRegr.R'
'PipeOpPredClassifSurvIPCW.R'
'PipeOpProbregrCompositor.R'
'PipeOpResponseCompositor.R'
'PipeOpSurvAvg.R'
'PipeOpTaskRegrSurv.R'
'PipeOpTaskSurvClassifDiscTime.R'
'PipeOpTaskSurvRegr.R'
'PipeOpTaskTransformer.R'
'PipeOpTaskSurvClassifIPCW.R'
'PredictionDataDens.R'
'PredictionDataSurv.R'
'PredictionDens.R'
Expand Down Expand Up @@ -177,7 +148,6 @@ Collate:
'mlr3proba-package.R'
'pecs.R'
'pipelines.R'
'plot.R'
'plot_probregr.R'
'scoring_rule_erv.R'
'surv_measures.R'
Expand Down
27 changes: 13 additions & 14 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -27,10 +27,8 @@ S3method(is_missing_prediction_data,PredictionDataDens)
S3method(is_missing_prediction_data,PredictionDataSurv)
S3method(pecs,PredictionSurv)
S3method(pecs,list)
S3method(plot,LearnerSurv)
S3method(plot,TaskDens)
S3method(plot,TaskSurv)
export(.c_get_unique_times)
export(.c_weight_survival_score)
export(.surv_return)
export(LearnerDens)
Expand All @@ -52,6 +50,7 @@ export(MeasureSurvCindex)
export(MeasureSurvDCalibration)
export(MeasureSurvGraf)
export(MeasureSurvHungAUC)
export(MeasureSurvICI)
export(MeasureSurvIntLogloss)
export(MeasureSurvLogloss)
export(MeasureSurvMAE)
Expand All @@ -72,17 +71,12 @@ export(PipeOpBreslow)
export(PipeOpCrankCompositor)
export(PipeOpDistrCompositor)
export(PipeOpPredClassifSurvDiscTime)
export(PipeOpPredRegrSurv)
export(PipeOpPredSurvRegr)
export(PipeOpPredTransformer)
export(PipeOpPredClassifSurvIPCW)
export(PipeOpProbregr)
export(PipeOpResponseCompositor)
export(PipeOpSurvAvg)
export(PipeOpTaskRegrSurv)
export(PipeOpTaskSurvClassifDiscTime)
export(PipeOpTaskSurvRegr)
export(PipeOpTaskTransformer)
export(PipeOpTransformer)
export(PipeOpTaskSurvClassifIPCW)
export(PredictionDens)
export(PredictionSurv)
export(TaskDens)
Expand All @@ -99,8 +93,8 @@ export(assert_surv_matrix)
export(breslow)
export(get_mortality)
export(pecs)
export(pipeline_survtoclassif_IPCW)
export(pipeline_survtoclassif_disctime)
export(pipeline_survtoregr)
export(plot_probregr)
import(checkmate)
import(data.table)
Expand All @@ -111,14 +105,19 @@ import(mlr3misc)
import(paradox)
importFrom(R6,R6Class)
importFrom(Rcpp,sourceCpp)
importFrom(graphics,plot)
importFrom(mlr3viz,fortify)
importFrom(stats,complete.cases)
importFrom(mlr3pipelines,"%>>%")
importFrom(mlr3pipelines,Graph)
importFrom(mlr3pipelines,as_graph)
importFrom(mlr3pipelines,gunion)
importFrom(mlr3pipelines,pipeline_greplicate)
importFrom(mlr3pipelines,po)
importFrom(mlr3pipelines,ppl)
importFrom(stats,density)
importFrom(stats,median)
importFrom(stats,model.frame)
importFrom(stats,model.matrix)
importFrom(stats,predict)
importFrom(stats,reformulate)
importFrom(stats,quantile)
importFrom(stats,sd)
importFrom(survival,Surv)
importFrom(utils,data)
Expand Down
66 changes: 56 additions & 10 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,26 +1,72 @@
# mlr3proba 0.7.4

* fix + update `MeasureSurv`: survival measure labels are now printed and the `obs_loss` property is now supported
* feat: add `na.rm` parameter to `msr("surv.calib_index")` to avoid `NaN` scores

# mlr3proba 0.7.3

* feat: added new calibration measure => `msr("surv.calib_index")`
* refactor + feat: `autoplot.PredictionSurv`
* The default `"calib"` plot uses the survival matrix directly now which is faster
* `"dcalib"` has extra barplot + better documentation
* Added new `type = "scalib"` which constructs the smoothed calibration plots as in Austin et al. (2020)
* **BREAKING CHANGE**: `"preds"` is now called `"isd"` (individual survival distribution). `row_ids` can now be used to filter the observations for which you draw the survival curves.

# mlr3proba 0.7.2

* fix: `lrn("surv.coxph")` is now trained with `model=TRUE` which fixes an issue with using observation weights [stackoverflow link](https://stackoverflow.com/questions/79297386/mlr3-predicted-values-for-surv-coxph-learner-with-case-weights).
* cleanup: remove `tsk("unemployment")` and associated files
* cleanup: remove unused references

# mlr3proba 0.7.1

* cleanup: removed all `PipeOp`s and pipelines related to survival => regression reduction techniques (see #414)
* fix: `$predict_type` of `survtoclassif_disctime` and `survtoclassif_IPCW` was `prob` (classification type) and not `crank` (survival type)
* fix: G(t) is not filtered when `t_max|p_max` is specified in scoring rules (didn't influence evaluation at all)
* docs: Clarified the use and impact of using `t_max` in scoring rules, added examples in scoring rules and AUC scores
* feat: Added new argument `remove_obs` in scoring rules to remove observations with observed time `t > t_max` as a processing step to alleviate IPCW issues.
This was before 'hard-coded' which made the Integrated Brier Score (`msr("surv.graf")`) differ minimally from other implementations and the original definition.

# mlr3proba 0.7.0

* Add `mlr3pipelines` to `Imports` and set minimum latest version from CRAN (`0.7.0`)
* Refactor code to minimize namespace calling and imports such as `mlr3pipelines::` or `R6::`
* Doc updates: add experimental badge in a some PipeOps + add references in others
* Add argument `scale_lp` for AFT `distrcompose` pipeop + respective pipeline

# mlr3proba 0.6.9

* New `PipeOp`s: `PipeOpTaskSurvClassifIPCW`, `PipeOpPredClassifSurvIPCW`
* New pipeline (**reduction method**): `pipeline_survtoclassif_IPCW`
* Improved the way Integrated Brier score handles the `times` argument and the `t_max`, especially when the survival matrix has one time point (column)
* Improved documentation of integrated survival scores
* Improved documentation of all pipelines
* Temp fix of math-rendering issue in package website
* Add experimental `lifecycle` badge for 3 pipelines (`survtoregr`, `distrcompositor` and `probregr`) - these are currently either not supported by literature or tested enough.

# mlr3proba 0.6.8

- `Rcpp` code optimizations
- Fixed ERV scoring to comply with `mlr3` dev version (no bugs before)
- Skipping `survtoregr` pipelines due to bugs (to be refactored in the future)
* `Rcpp` code optimizations
* Fixed ERV scoring to comply with `mlr3` dev version (no bugs before)
* Skipping `survtoregr` pipelines due to bugs (to be refactored in the future)

# mlr3proba 0.6.7

- Deprecate `crank` to `distr` composition in `distrcompose` pipeop (only from `lp` => `distr` works now)
- Add `get_mortality()` function (from `survivalmodels::surv_to_risk()`
- Add Rcpp function `assert_surv_matrix()`
- Update and simplify `crankcompose` pipeop and respective pipeline (no `response` is created anymore)
- Add `responsecompositor` pipeline with `rmst` and `median`
* Deprecate `crank` to `distr` composition in `distrcompose` pipeop (only from `lp` => `distr` works now)
* Add `get_mortality()` function (from `survivalmodels::surv_to_risk()`
* Add Rcpp function `assert_surv_matrix()`
* Update and simplify `crankcompose` pipeop and respective pipeline (no `response` is created anymore)
* Add `responsecompositor` pipeline with `rmst` and `median`

# mlr3proba 0.6.6

- Small fixes and refactoring to the discrete-time pipeops
* Small fixes and refactoring to the discrete-time pipeops

# mlr3proba 0.6.5

* Add support for discrete-time survival analysis
* New `PipeOp`s: `PipeOpTaskSurvClassifDiscTime`, `PipeOpPredClassifSurvDiscTime`
* New pipeline: `pipeline_survtoclassif`
* New pipeline (**reduction method**): `pipeline_survtoclassif_disctime`

# mlr3proba 0.6.4

Expand Down
Loading

0 comments on commit e2a6c21

Please sign in to comment.