Skip to content

Commit

Permalink
Merge pull request #562 from mlrun/1.6.x-dev
Browse files Browse the repository at this point in the history
merge development fixes
  • Loading branch information
aviaIguazio authored Jan 16, 2024
2 parents d6e9a70 + ad8fd1d commit 902a2c2
Show file tree
Hide file tree
Showing 3 changed files with 5 additions and 4 deletions.
2 changes: 1 addition & 1 deletion mask-detection/1-training-and-evaluation.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@
" base_image='mlrun/mlrun-gpu' if use_gpu else 'mlrun/mlrun',\n",
" commands=commands,\n",
" builder_env=builder_env,\n",
" skip_deployed=True)"
" overwrite_build_params=True)"
]
},
{
Expand Down
4 changes: 2 additions & 2 deletions mask-detection/3-automatic-pipeline.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -216,11 +216,11 @@
"# Import the `onnx_utils` function to optimize the model:\n",
"# Import the `onnx_utils` function to optimize the model:\n",
"onnx_func = project.set_function(\"hub://onnx_utils\", name=\"onnx-utils\",requirements=['tensorflow==2.9.0',\n",
" 'onnx~=1.10.1',\n",
" 'onnx~=1.15.0',\n",
" 'onnxruntime~=1.8.1',\n",
" 'onnxoptimizer~=0.2.0',\n",
" 'onnxmltools~=1.9.0',\n",
" 'tf2onnx~=1.9.0'] if framework=='tf-keras' else ['torch'])\n",
" 'tf2onnx~=1.16.0'] if framework=='tf-keras' else ['torch'])\n",
"\n",
"onnx_func.deploy()\n",
"\n",
Expand Down
3 changes: 2 additions & 1 deletion stocks-prediction/src/train_stocks.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def __len__(self):


class Model(torch.nn.Module):
def __init__(self, input_size=16, output_size=1, hidden_dim=2, n_layers=1, batch_size=1, seq_size=5):
def __init__(self, input_size=11, output_size=1, hidden_dim=2, n_layers=1, batch_size=1, seq_size=5):
super(Model, self).__init__()
# Defining some parameters
self.input_size = input_size
Expand Down Expand Up @@ -120,6 +120,7 @@ def handler(vector_name='stocks',
dataset = StocksDataset(vector_name, seq_size, start_time, end_time)
training_set = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, drop_last=True)
input_size = dataset.data[0][0].shape[0]
context.logger.info("input size {}".format(input_size))
output_size = 1
# creating the model
model = Model(input_size=input_size, output_size=output_size, hidden_dim=hidden_dim, n_layers=n_layers,
Expand Down

0 comments on commit 902a2c2

Please sign in to comment.