Skip to content
/ LLaMo Public

Official Implementation (Pytorch) of the "LLaMo: Large Language Model-based Molecular Graph Assistant", NeurIPS 2024

Notifications You must be signed in to change notification settings

mlvlab/LLaMo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLaMo: Large Language Model-based Molecular Graph Assistant

Jinyoung Park, Minseong Bae, Dohwan Ko, Hyunwoo J. Kim.

Official PyTorch implementation of the "LLaMo: Large Language Model-based Molecular Graph Assistant". (NeurIPS 2024)

TODO

  • Release the code.
  • Release the checkpoint and dataset.
  • Refactoring code to incorporate the huggingface.
  • Release the pre-trained huggingface model.

Enviroment

To install requirements, run:

git clone https://github.com/mlvlab/LLaMo.git
cd LLaMo
conda create -n llamo python==3.9
conda activate llamo
pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt

Preparation

Pretrained graph encoder

We utilized the pre-trained graph encoder checkpoint from the MoleculeSTM repository. You can download the pre-trained graph encoder checkpoint from the link. Place the pretrained graph model in the `MoleculeSTM/' folder.

Datasets

You can download the datasets from the link. Place both datasets (MoleculeDesc, instruction_tuning) in the data/ folder.

Checkpoint

You can download our checkpoint from the link.


We're now working on refactoring the code to incorporate the huggingface. Please stay tuned:)

Training

You can update the training config in the config_file folder.

Step1. Molecular graph-language alignment

python train.py --root_train 'data/MoleculeDesc/' --root_eval 'data/MoleculeDesc/' --devices '0,1,2,3' --filename "stage1" --max_epochs 3 --mode train --inference_batch_size 16 --batch_size 4 --config_file config_file/stage1.yaml --accumulate_grad_batches 4

Step2. Instruction tuning

python train.py --root_train 'data/instruction_tuning/' --root_eval 'data/MoleculeDesc/' --devices '0,1,2,3' --filename "stage2" --max_epochs 3 --mode train --inference_batch_size 16 --batch_size 4 --config_file config_file/stage2.yaml --accumulate_grad_batches 4 --stage_path "./all_checkpoints/stage1/last.ckpt"

Inference and Evaluation

Inference

If you want to generate the output of the LLaMo on the molecule description generation task, you can run the following command.

python train.py --root_train 'data/MoleculeDesc/' --root_eval 'data/MoleculeDesc/' --devices '0,1,2,3' --filename "desc_output" --mode eval --inference_batch_size 1 --batch_size 1 --config_file config_file/stage2.yaml --stage_path <path_to_checkpoint>

Evaluation

If you want to evaluate the performance of the LLaMo on the molecule description generation task, you can run the following command.

python evaluate.py --task desc --path <path_to_predictions>

Contact

If you have any questions, please create an issue on this repository or contact at [email protected].

Citation

If you find our work interesting, please consider giving a ⭐ and citation.

@inproceedings{park2024llamo,
  title={LLaMo: Large Language Model-based Molecular Graph Assistant},
  author={Park, Jinyoung and Bae, Minseong and Ko, Dohwan and Kim, Hyunwoo J},
  booktitle={NeurIPS},
  year={2024}
}

About

Official Implementation (Pytorch) of the "LLaMo: Large Language Model-based Molecular Graph Assistant", NeurIPS 2024

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages