Skip to content

Road_lanes_classification_from_pointclouds_using_machine_learning

Notifications You must be signed in to change notification settings

mohamadalbaaj/Road_lanes_classification

Repository files navigation

Road_lanes_classification

Road_lanes_classification_from_pointclouds_using_machine_learning Image Alt Text

Prerequisites

  • Python version 3.10
  • jupter notebook note: To ensure seamless integration, please modify the paths as per your specific dataset storage location

Required libraries

  • pip install pandas
  • pip install numpy
  • pip install python-time
  • pip install os-sys
  • pip install scikit-learn
  • pip install matplotlib
  • pip install tensorflow
  • pip install torch
  • pip install torchvision
  • pip install torchstat
  • pip install Pillow
  • pip install opencv-python
  • pip install tqdm
  • pip install seaborn

Approaches used

Approach 1 decision tree Approach 2 pointcloud2image Approach 3 point net Note: Approach 2 was employed due to the nature of the dataset, which consists of road lane segments. The primary focus lies in extracting valuable insights from the surface characteristics.

Dataset

Road lane segments as .npy

distributed into 6 clasess

  1. 2lanes
  2. 3lanes
  3. crossing
  4. split4lanes
  5. split6lanes
  6. transition

with 22 features

  1. 0 local x
  2. 1 local y
  3. 2 local z
  4. 3 red values
  5. 4 green values
  6. 5 blue values
  7. 6 global x
  8. 7 global y
  9. 8 global z
  10. 9 intensity
  11. 10 number of lidar returns
  12. 11 planarity
  13. 12 linearity
  14. 13 sphericity
  15. 14 verticality
  16. 15 mean intensity in 0.3m increments along y
  17. 16 mean intensity in 1.5m increments along y
  18. 17 mean intensity in 0.3m increments along x
  19. 18 mean intensity in 1.5m increments along x
  20. 19 edge area
  21. 20 grid increment index 0.3m resolution
  22. 21 intensity principal gradient positions

Note: I provided one example of the dataset

About

Road_lanes_classification_from_pointclouds_using_machine_learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published