Skip to content

molinfo-vienna/FAME3R

Repository files navigation

FAME3R: a re-implementation of the FAME3 model.

Installation

  1. Create a conda environment with the required python version:
conda create --name fame3r-env python=3.10
  1. Activate the environment:
conda activate fame3r-env
  1. Install package:
pip install fame3r

Usage

Determining the optimal hyperparameters via k-fold cross-validation

fame3r-cv-hp-search -i INPUT_FILE -o OUTPUT_FOLDER -r RADIUS[OPTIONAL, DEFAULT=5] -n NUMFOLDS[OPTIONAL, DEFAULT=10]

Training a model

fame3r-train -i INPUT_FILE -o OUTPUT_FOLDER -r RADIUS[OPTIONAL, DEFAULT=5]

Applying a trained model on some (labeled) test data

fame3r-test -i INPUT_FILE -m MODEL_FILE -o OUTPUT_FOLDER -r RADIUS[OPTIONAL, DEFAULT=5] -t THRESHOLD[OPTIONAL, DEFAULT=0.2]

Computing the SoMs of some unlabeled data

fame3r-infer -i INPUT_FILE -m MODEL_FILE -o OUTPUT_FOLDER -r RADIUS[OPTIONAL, DEFAULT=5] -t THRESHOLD[OPTIONAL, DEFAULT=0.2]

About

A brief re-implementation of the FAME.AL model

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages