Data and analysis code for the forthcoming manuscript:
By Jon Walbrin, Nikita Sossounov, Morteza Mahdiani, Igor Vaz, & Jorge Almeida
root/
│
├── data/
│ ├── behavioural_dimensions/
│ │ ├── selected_dimensions.csv
│ ├── eighty_tools/
│ │ ├── [DNN features] # main experiment
│ ├── extra/
│ │ ├── [DNN features] # extra (20 unseen) objects
│ ├── things/
│ │ ├── [DNN features] # things image set
|
├── functions/
│ ├── functions.py
│
├── [scripts]
Install conda enivronment:
conda create -n ok_clip python=3.11 pip
conda activate ok_clip
pip install -r requirements.txt
For ease, each analysis step is implemented with a separate .py script (variables can be set at the top of the script).
# --- Mandatory steps (for each desired network)
1. oc_select_components.py # cross-validated component selection
-- This generates a data_object (class) that is required for each successive script
2. oc_predictions.py # generatate cross-validated predictions
# --- Main analysis
oc_permutations.py # generate cross-validated permutations (optional)
oc_plot_bars.py # plot bar charts
oc_plot_lines.py # plot line charts
# --- Unique variance analyses
oc_predictions_uv.py # generatate cross-validated, combined predictions for specified model pair(s)
oc_plot_lines_uv.py # plot line charts
# --- THINGS objects analysis
oc_permutations_things.py # generate cross-validated permutations (optional)
oc_plot_bars_things.py
# --- Extra (20 unseen) objects analysis
oc_permutations_extra.py # generate cross-validated permutations (optional)
oc_plot_bars_extra.py