Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error Handling #11

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
163 changes: 89 additions & 74 deletions Claude_Investor.ipynb
Original file line number Diff line number Diff line change
@@ -1,42 +1,26 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyPuI82WtCRP7mS26mCp9B+j",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/mshumer/gpt-investor/blob/main/Claude_Investor.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gQWLeJCFS6C4"
},
"source": [
"## claude-investor\n",
"By Matt Shumer (https://twitter.com/mattshumer_)\n",
"\n",
"Github repo: https://github.com/mshumer/gpt-investor"
],
"metadata": {
"id": "gQWLeJCFS6C4"
}
]
},
{
"cell_type": "code",
Expand All @@ -51,17 +35,22 @@
},
{
"cell_type": "code",
"source": [
"ANTHROPIC_API_KEY = \"YOUR_API_KEY\" # Replace with your Anthropic API key"
],
"execution_count": null,
"metadata": {
"id": "50ZEVdt53Xkr"
},
"execution_count": null,
"outputs": []
"outputs": [],
"source": [
"ANTHROPIC_API_KEY = \"YOUR_API_KEY\" # Replace with your Anthropic API key"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "tg78Hup6xona"
},
"outputs": [],
"source": [
"import yfinance as yf\n",
"from datetime import datetime, timedelta\n",
Expand All @@ -74,62 +63,77 @@
"def get_article_text(url):\n",
" try:\n",
" response = requests.get(url)\n",
" response.raise_for_status() # Raise an exception for HTTP errors\n",
" soup = BeautifulSoup(response.content, 'html.parser')\n",
" article_text = ' '.join([p.get_text() for p in soup.find_all('p')])\n",
" return article_text\n",
" except:\n",
" return \"Error retrieving article text.\"\n",
" except Exception as e:\n",
" print(f\"Error retrieving article text: {e}\")\n",
" return None\n",
"\n",
"def get_stock_data(ticker, years):\n",
" end_date = datetime.now().date()\n",
" start_date = end_date - timedelta(days=years*365)\n",
" try:\n",
" end_date = datetime.now().date()\n",
" start_date = end_date - timedelta(days=years*365)\n",
"\n",
" stock = yf.Ticker(ticker)\n",
" stock = yf.Ticker(ticker)\n",
"\n",
" # Retrieve historical price data\n",
" hist_data = stock.history(start=start_date, end=end_date)\n",
" # Retrieve historical price data\n",
" hist_data = stock.history(start=start_date, end=end_date)\n",
"\n",
" # Retrieve balance sheet\n",
" balance_sheet = stock.balance_sheet\n",
" # Retrieve balance sheet\n",
" balance_sheet = stock.balance_sheet\n",
"\n",
" # Retrieve financial statements\n",
" financials = stock.financials\n",
" # Retrieve financial statements\n",
" financials = stock.financials\n",
"\n",
" # Retrieve news articles\n",
" news = stock.news\n",
" # Retrieve news articles\n",
" news = stock.news\n",
"\n",
" return hist_data, balance_sheet, financials, news\n",
" return hist_data, balance_sheet, financials, news\n",
" except Exception as e:\n",
" print(f\"Error retrieving stock data for {ticker}: {e}\")\n",
" return None, None, None, None\n",
"\n",
"def get_claude_comps_analysis(ticker, hist_data, balance_sheet, financials, news):\n",
" system_prompt = f\"You are a financial analyst assistant. Analyze the given data for {ticker} and suggest a few comparable companies to consider. Do so in a Python-parseable list.\"\n",
"\n",
" news = \"\"\n",
"\n",
" for article in news:\n",
" article_text = get_article_text(article['link'])\n",
" news = news + f\"\\n\\n---\\n\\nTitle: {article['title']}\\nText: {article_text}\"\n",
" try:\n",
" system_prompt = f\"You are a financial analyst assistant. Analyze the given data for {ticker} and suggest a few comparable companies to consider. Do so in a Python-parseable list.\"\n",
"\n",
" messages = [\n",
" {\"role\": \"user\", \"content\": f\"Historical price data:\\n{hist_data.tail().to_string()}\\n\\nBalance Sheet:\\n{balance_sheet.to_string()}\\n\\nFinancial Statements:\\n{financials.to_string()}\\n\\nNews articles:\\n{news.strip()}\\n\\n----\\n\\nNow, suggest a few comparable companies to consider, in a Python-parseable list. Return nothing but the list. Make sure the companies are in the form of their tickers.\"},\n",
" ]\n",
" news_content = \"\"\n",
"\n",
" for article in news:\n",
" article_text = get_article_text(article['link'])\n",
" news_content = news_content + f\"\\n\\n---\\n\\nTitle: {article['title']}\\nText: {article_text}\"\n",
"\n",
" headers = {\n",
" \"x-api-key\": ANTHROPIC_API_KEY,\n",
" \"anthropic-version\": \"2023-06-01\",\n",
" \"content-type\": \"application/json\"\n",
" }\n",
" data = {\n",
" \"model\": 'claude-3-haiku-20240307',\n",
" \"max_tokens\": 2000,\n",
" \"temperature\": 0.5,\n",
" \"system\": system_prompt,\n",
" \"messages\": messages,\n",
" }\n",
" response = requests.post(\"https://api.anthropic.com/v1/messages\", headers=headers, json=data)\n",
" response_text = response.json()['content'][0]['text']\n",
" messages = [\n",
" {\"role\": \"user\", \"content\": f\"Historical price data:\\n{hist_data.tail().to_string()}\\n\\nBalance Sheet:\\n{balance_sheet.to_string()}\\n\\nFinancial Statements:\\n{financials.to_string()}\\n\\nNews articles:\\n{news_content.strip()}\\n\\n----\\n\\nNow, suggest a few comparable companies to consider, in a Python-parseable list. Return nothing but the list. Make sure the companies are in the form of their tickers.\"},\n",
" ]\n",
"\n",
" return ast.literal_eval(response_text)\n",
" headers = {\n",
" \"x-api-key\": ANTHROPIC_API_KEY,\n",
" \"anthropic-version\": \"2023-06-01\",\n",
" \"content-type\": \"application/json\"\n",
" }\n",
" data = {\n",
" \"model\": 'claude-3-haiku-20240307',\n",
" \"max_tokens\": 2000,\n",
" \"temperature\": 0.5,\n",
" \"system\": system_prompt,\n",
" \"messages\": messages,\n",
" }\n",
" response = requests.post(\"https://api.anthropic.com/v1/messages\", headers=headers, json=data)\n",
" \n",
" # Check if the response was successful\n",
" response.raise_for_status()\n",
" \n",
" response_text = response.json()['content'][0]['text']\n",
" return ast.literal_eval(response_text)\n",
" except requests.exceptions.RequestException as req_error:\n",
" print(f\"Request error occurred for {ticker}: {req_error}\")\n",
" return None\n",
" except Exception as e:\n",
" print(f\"Error occurred for {ticker}: {e}\")\n",
" return None\n",
"\n",
"def compare_companies(main_ticker, main_data, comp_ticker, comp_data):\n",
" system_prompt = f\"You are a financial analyst assistant. Compare the data of {main_ticker} against {comp_ticker} and provide a detailed comparison, like a world-class analyst would. Be measured and discerning. Truly think about the positives and negatives of each company. Be sure of your analysis. You are a skeptical investor.\"\n",
Expand Down Expand Up @@ -352,12 +356,23 @@
"ranking = rank_companies(industry, analyses, prices)\n",
"print(f\"\\nRanking of Companies in the {industry} Industry:\")\n",
"print(ranking)"
],
"metadata": {
"id": "tg78Hup6xona"
},
"execution_count": null,
"outputs": []
]
}
],
"metadata": {
"colab": {
"authorship_tag": "ABX9TyPuI82WtCRP7mS26mCp9B+j",
"include_colab_link": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
]
}
},
"nbformat": 4,
"nbformat_minor": 0
}