Official implementation of DO-FAM
Please download the pretrained models and move them to ./pretrained_models/
Note: when test, there is no need to use classifier, so you don't need to download it.
Model | Description |
---|---|
DOLL | Pretrained models of DOLL on attribute Gender, Eyeglasses, Age, Smiling |
hyperstyle+stylegan | Pretrained generator released by hyperstyle |
wEncoder | Pretrained face encoder released by hyperstyle |
Please download the test dataset(30 images with corresponding latent codes and weight deltas) in this link and put them in ./test_data/
Then run the following command:
python test.py --attribute 'Smiling' --coeff_min -1.5 --coeff_max 1.5 --step 0.5 --gpu '0'
for lower GPU usage, we seperate the editing process to 2 steps: inversion step and editing step
1. Download checkpoints mentioned in the upper chart.
2. Modify data_paths.test_image to your own image paths in ./configs/path_config.py.
3. Run the following command to get the latent codes and weights of images(will take 7G RAM in GPU):
python generate_latents_and_weights.py --exp_dir './test_data/' --save_weight_deltas --gpu '0'
1. Modify data_paths.test_latent and data_paths.test_weights_delta in ./configs/path_config.py to your own in Step1
2. Run the following command to get the edited image(will take 8G RAM in GPU):
python test.py \
--test_latent_path './test_data/latent_codes/' \
--test_weights_delta_path './test_data/weight_deltas/' \
--save_image_path './test_data/' \
--attribute 'Smiling' --coeff_min -1.5 --coeff_max 1.5 --step 0.5 --gpu '0'
You can choose 'Eyeglasses', 'Gender', 'Smiling' and 'Age' to manipulate.
To run the training, please download the extra pretrained models and move them to ./pretrained_models/
Model | Description |
---|---|
classifier | Pretrained models of Latent Classifier on hyperstyle latent codes for 40 attributes |