-
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Initial implementation of Linear Regression functionalities on ml pac…
…kage path.
- Loading branch information
Showing
2 changed files
with
207 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
/* | ||
* Copyright (c) 2024 - Nathanne Isip | ||
* This file is part of Zhivo. | ||
* | ||
* Zhivo is free software: you can redistribute it and/or modify | ||
* it under the terms of the GNU General Public License as published | ||
* by the Free Software Foundation, either version 3 of the License, | ||
* or (at your option) any later version. | ||
* | ||
* Zhivo is distributed in the hope that it will be useful, but | ||
* WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU General Public License | ||
* along with Zhivo. If not, see <https://www.gnu.org/licenses/>. | ||
*/ | ||
|
||
#include "zhvlib/ML.hpp" | ||
|
||
#include <cmath> | ||
#include <exception> | ||
#include <vector> | ||
|
||
static inline std::vector<double> arrayToDoubleVector(std::vector<DynamicObject> array) { | ||
std::vector<double> values(array.size()); | ||
|
||
#pragma omp parallel for | ||
for(size_t i = 0; i < array.size(); i++) { | ||
if(!array[i].isNumber()) | ||
throw std::runtime_error("Value from array is not a number"); | ||
|
||
values[i] = array[i].getNumber(); | ||
} | ||
|
||
return values; | ||
} | ||
|
||
static inline double calculateMean(std::vector<DynamicObject> array) { | ||
std::vector<double> values = arrayToDoubleVector(array); | ||
size_t arraySize = array.size(); | ||
double sum = 0.0; | ||
|
||
#pragma omp parallel for reduction(+:sum) | ||
for(size_t i = 0; i < arraySize; i++) | ||
sum += values[i]; | ||
|
||
return sum / arraySize; | ||
} | ||
|
||
ZHIVO_FUNC(ml_trendline_calculate) { | ||
if(args.size() != 2) | ||
throw std::runtime_error( | ||
"Expecting 2 argument, got " + | ||
std::to_string(args.size()) + | ||
"." | ||
); | ||
|
||
DynamicObject xObj = args.at(0), | ||
yObj = args.at(1); | ||
|
||
if(!xObj.isArray() || !yObj.isArray()) | ||
throw std::runtime_error("Parameter x and y must be both number array"); | ||
|
||
std::vector<DynamicObject> xObjArray = *xObj.getArray(); | ||
std::vector<DynamicObject> yObjArray = *yObj.getArray(); | ||
|
||
if(xObjArray.size() != yObjArray.size()) | ||
throw std::runtime_error("Data set size of x and y did not match"); | ||
|
||
double x = calculateMean(xObjArray), | ||
y = calculateMean(yObjArray), | ||
numerator = 0.0, | ||
denominator = 0.0; | ||
|
||
#pragma omp parallel for | ||
for(size_t i = 0; i < xObjArray.size(); i++) { | ||
numerator += (xObjArray[i].getNumber() - x) * | ||
(yObjArray[i].getNumber() - y); | ||
|
||
denominator += (xObjArray[i].getNumber() - x) * | ||
(xObjArray[i].getNumber() - x); | ||
} | ||
|
||
double slope = numerator / denominator; | ||
std::vector<DynamicObject> returnValues; | ||
|
||
returnValues.emplace_back(DynamicObject(slope)); | ||
returnValues.emplace_back(DynamicObject(y - slope * x)); | ||
|
||
return DynamicObject(std::make_shared<std::vector<DynamicObject>>( | ||
returnValues | ||
)); | ||
} | ||
|
||
ZHIVO_FUNC(ml_trendline_calculateRmse) { | ||
if(args.size() != 3) | ||
throw std::runtime_error( | ||
"Expecting 3 argument, got " + | ||
std::to_string(args.size()) + | ||
"." | ||
); | ||
|
||
DynamicObject xObj = args.at(0), | ||
yObj = args.at(1), | ||
model = args.at(2); | ||
std::vector<DynamicObject> regModel = *model.getArray(); | ||
|
||
if(!model.isArray() || regModel.size() != 2) | ||
throw std::runtime_error("Invalid linear regression model"); | ||
|
||
if(!xObj.isArray() || !yObj.isArray()) | ||
throw std::runtime_error("Parameter x and y must be both number array"); | ||
|
||
std::vector<DynamicObject> xObjArray = *xObj.getArray(); | ||
std::vector<DynamicObject> yObjArray = *yObj.getArray(); | ||
|
||
if(xObjArray.size() != yObjArray.size()) | ||
throw std::runtime_error("Data set size of x and y did not match"); | ||
|
||
double sumSquaredErrs = 0.0; | ||
size_t paramSize = xObjArray.size(); | ||
|
||
#pragma omp parallel for | ||
for(size_t i = 0; i < paramSize; i++) { | ||
std::vector<DynamicObject> model; | ||
model.emplace_back(regModel.at(0)); | ||
model.emplace_back(regModel.at(1)); | ||
|
||
std::vector<DynamicObject> params; | ||
params.emplace_back(DynamicObject( | ||
std::make_shared<std::vector<DynamicObject>>(model) | ||
)); | ||
params.emplace_back(xObjArray[i]); | ||
|
||
double yPred = ml_trendline_predict(symtab, params) | ||
.getNumber(); | ||
double error = yObjArray[i].getNumber() - yPred; | ||
|
||
sumSquaredErrs += error * error; | ||
} | ||
|
||
return DynamicObject(std::sqrt(sumSquaredErrs / paramSize)); | ||
} | ||
|
||
ZHIVO_FUNC(ml_trendline_predict) { | ||
if(args.size() != 2) | ||
throw std::runtime_error( | ||
"Expecting 3 argument, got " + | ||
std::to_string(args.size()) + | ||
"." | ||
); | ||
|
||
DynamicObject model = args.at(0), | ||
value = args.at(1); | ||
std::vector<DynamicObject> regModel = *model.getArray(); | ||
|
||
if(!model.isArray() || regModel.size() != 2) | ||
throw std::runtime_error("Invalid linear regression model"); | ||
|
||
if(!value.isNumber()) | ||
throw std::runtime_error("Cannot predict linear regression value for non-numbers"); | ||
|
||
DynamicObject slope = regModel.at(0), | ||
intercept = regModel.at(1); | ||
|
||
if(!slope.isNumber() || !intercept.isNumber()) | ||
throw std::runtime_error("Linear regression model's slope and intercept must be a number"); | ||
|
||
return DynamicObject( | ||
slope.getNumber() * | ||
value.getNumber() + | ||
intercept.getNumber() | ||
); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
/* | ||
* Copyright (c) 2024 - Nathanne Isip | ||
* This file is part of Zhivo. | ||
* | ||
* Zhivo is free software: you can redistribute it and/or modify | ||
* it under the terms of the GNU General Public License as published | ||
* by the Free Software Foundation, either version 3 of the License, | ||
* or (at your option) any later version. | ||
* | ||
* Zhivo is distributed in the hope that it will be useful, but | ||
* WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU General Public License | ||
* along with Zhivo. If not, see <https://www.gnu.org/licenses/>. | ||
*/ | ||
|
||
#ifndef ZHIVO_STDLIB_ML_CC | ||
#define ZHIVO_STDLIB_ML_CC | ||
|
||
#include "ZhivoLibrary.hpp" | ||
|
||
ZHIVO_LIB_START | ||
|
||
ZHIVO_FUNC(ml_trendline_calculate); | ||
ZHIVO_FUNC(ml_trendline_calculateRmse); | ||
ZHIVO_FUNC(ml_trendline_predict); | ||
|
||
ZHIVO_LIB_END | ||
|
||
#endif |