Skip to content

v6.2.0

Compare
Choose a tag to compare
@davidmezzetti davidmezzetti released this 08 Nov 14:55
· 314 commits to master since this release

This release adds binary quantization, bind parameters for multimedia SQL queries and performance improvements

⚡ Scalar quantization. Supports 1 bit (binary) through 8 bit quantization. Can dramatically reduce vector storage requirements.

🚀 SQL bind parameters. Enables searching binary content with SQL statements, along with being a standard best practice.

See below for full details on the new features, improvements and bug fixes.

New Features

  • Add scalar quantization support to vectors (#583)
  • Feature request: Bind variable support when searching with SQL using Content=True mode (#564)
  • Add cls pooling option (#565)
  • Add prefix parameter for object storage (#568)
  • Add parameter to RetrieveTask to disable directory flattening (#569)
  • Add support for binary indexes to Faiss ANN (#585)
  • Add support for scalar data to torch and numpy ANN backends (#587)
  • Add quantization notebook (#588)
  • Add API extensions notebook (#591)
  • Add env variable to disable macOS MPS devices (#592)

Improvements

  • Allow searching for images (#404)
  • Update LLM pipeline to support template parameter (#566)
  • Update recommended models (#573)
  • Is it possible to add chat history to extractor workflow? (#575)
  • Extractor pipeline improvements (#577)
  • Update documentation (#582)
  • Move vector normalization to vectors module (#584)
  • Update benchmarks to read configuration (#586)
  • Update torch version in Dockerfile (#589)
  • Update Faiss ANN to support IVF strings without number of cells (#594)
  • Update documentation to note SQL bind parameters (#596)

Bug Fixes

  • Inconsistency in Embeddings behavior in Applications (#571)