Using Fourier Transform for Improving Task-Oriented Language Grounding
Nguyen T.Tin, Ngoc Duy Nguyen, Che Peng Lim, Asim Bhatti, Kim Yong Guk
Sejong University, Seoul, Korea
Deakin University, Australia
- Code for training an A3C-LSTM agent using Fourier Transform Attention in Single Goal or Multi Goals Env.
For running a random agent:
python env_test.py
To play in the environment:
python env_test.py --interactive 1
To change the difficulty of the environment (easy/medium/hard):
python env_test.py -d easy
For training a Stacked Attention A3C-LSTM agent with 4 threads:
python a3c_main.py --num-processes 4 --evaluate 0 --difficulty easy
For training a Stacked Attention and Auto-Encoder A3C-LSTM with agent with 4 threads:
python a3c_main.py --num-processes 4 --evaluate 0 --difficulty easy --auto-encoder
The code will save the best model at ./saved/
.
To the test the pre-trained model for Multitask Generalization:
python a3c_main.py --evaluate 1 --load saved/pretrained_model
To the test the pre-trained model for Zero-shot Task Generalization:
python a3c_main.py --evaluate 2 --load saved/pretrained_model
To the visualize the model while testing add '--visualize 1':
python a3c_main.py --evaluate 2 --load saved/pretrained_model --visualize 1
To test the trained model, use --load saved/model_best
in the above commands.
## Cite as
>Nguyen T.Tin, Ngoc Duy Nguyen, Che Peng Lim, Asim Bhatti, Kim Yong Guk.
## Acknowledgements
This repository uses ViZDoom API (https://github.com/mwydmuch/ViZDoom) and parts of the code from the API. This is a PyTorch implementation based on [this repo](https://github.com/devendrachaplot/DeepRL-Grounding).